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Abstract: The rapid advancement of portable electronics has created enormous demand for
compact optical imaging systems. Such systems often require folded optical systems with beam
steering and shaping components to reduce sizes and minimize image aberration at the same
time. In this study, we present a solution that utilizes an inverse-designed dielectric metasurface
for arbitrary-angle image-relay with aberration correction. The metasurface phase response is
optimized by a series of artificial neural networks to compensate for the severe aberrations in the
deflected images and meet the requirements for device fabrication at the same time. We compare
our results to the solutions found by the global optimization tool in Zemax OpticStudio and
show that the proposed method can predict better point-spread functions and images with less
distortion. Finally, we designed a metasurface to achieve the optimized phase profile.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The rising demand for portability in smartphones, near-eye displays, medical devices, etc. has
necessitated the development of miniature optical system designs characterized by reduced sizes
and weights. Metasurfaces are capable of manipulating light at a subwavelength scale through
nanostructures [1] and have shown great potential to significantly shrink the overall footprint and
achieve system miniaturization. In recent years, metasurfaces have been extensively investigated
for achromatic focusing [2,3], beam shaping [4–6], filtering [7,8], polarization control [9,10],
aberration correction [11,12], all-optical image processing [13–16] and more. In addition,
multiple functions can be multiplexed onto one single metasurface device [17–19]. Among these
studies, considerable attention has been devoted to enhancing the optical quality at paraxial
imaging conditions with rotationally symmetric systems, where the performance degrades rapidly
as the beam deviates from normal incidence. Metasurfaces with asymmetric phase functions for
off-axis image relaying are insufficiently investigated. The latter represents a more general case
in practice, where both the positions of the input and sensor are arbitrary and an image-relay
path is to be determined. In this work, we present our solution for designing metasurfaces that
address this problem. Specifically, we utilize a physical optics propagation model to evaluate
the aberration in the deflected images and adopt a series of artificial neural networks to find the
optimal phase function that ensures good image quality for a wide field of view.

Figure 1 shows a generalized imaging configuration. Light from the upstream optics encounters
the input surface and is redirected to a tilted image plane. In practice, the input and image planes
can be any two adjacent surfaces along the optical path of a system. In this paper, we use a
metasurface to fulfill the role of beam shaping. The first function of the metasurface is to relay
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the image collected by previous optics to another image plane tilted by a large angle. The second
and most important function of the metasurface is to perform optical aberration correction on
the deflected image. Thus, the design of the metasurface is to optimize the phase profile to
accommodate known inputs from the upstream optics. Traditionally, optimization of systems for
aberration reduction has relied upon gradient-free approaches, such as evolutionary (or genetic)
algorithms [20,21]. Evolutionary algorithms use an iterative process of mutation and selection
based on solution fitness, and do not require the computation of a gradient, making them useful
in optimization with complicated loss functions with discontinuities. Commercial optical design
software packages like Zemax OpticStudio (Ansys, Inc.) have adopted these methods in their
built-in optimization tools to predict starting point designs. Nonetheless, these algorithms take a
great amount of time to converge and struggle to scale well as the number of parameters increases.
Gradient-based methods such as adjoint optimization are also used in photonic inverse design and
can handle a large-number of parameters such as in topology optimization [22]. However, these
methods require a fully differentiable forward model and can be quite complex to implement.
Recently, machine learning has become increasingly popular for the inverse design of photonic
devices and imaging systems [23–28]. It has been demonstrated that artifical neural networks
(ANNs) can be trained as a surrogate forward model for optimization in cases where the physical
model is either unknown, non-differentiable, or complex to map between the input and output
data.
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Fig. 1. A schematic of a general image relay configuration, with two adjacent planes
extracted from an optical train. The angle between the planes can be large. 𝐷ap
is the clear aperture diameter of the metasurface and 𝑍prop is the center-to-center
distance of the planes. Right panel: Without correction optics, light from the upstream
optics misses the image plane and forms aberrated images. After adding an optimized
metasurface, light can be correctly deflected to the image plane and forms unaberrated
images.
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Fig. 1. A schematic of a general image relay configuration, with two adjacent planes
extracted from an optical train. The angle between the planes can be large. Dap is the clear
aperture diameter of the metasurface and Zprop is the center-to-center distance of the planes.
Right panel: Without correction optics, light from the upstream optics misses the image
plane and forms aberrated images. After adding an optimized metasurface, light can be
correctly deflected to the image plane and forms unaberrated images.

There are several common approaches for deep learning based inverse design in photonics.
The problem of inverse design can be defined as the following: find the set of parameters D that
when passed through the physical model f gives a certain response R, i.e., f (D) = R. The first and
most simple approach is to train a neural network that tries to directly solve the inverse problem:
D = f −1(R) given some desired response. However, in practice this approach often fails as the
inverse problem is ill-posed due to non-uniqueness. In many problems there are multiple D that
produce the same R and the network struggles to learn the inverse function.

One popular approach to overcome this is the tandem neural network approach where a
surrogate forward model network is combined with an inverse design network [29]. In this
method an ANN is first trained to approximate the forward model of a system and is then fixed.
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The model is then coupled with a second neural network which learns to generate solutions that
produce the desire response when passed through the surrogate forward model. In this way
physical consistency is enforced and the inverse design network is aided by the surrogate forward
model.

Similarly, iterative surrogate methods have gained attention as an alternate to direct inversion
approaches [30–32]. In these approaches the optimal design is solved for by evaluating the design
parameters through the surrogate forward model and back-propagating the loss to update the
parameters. These methods differ from the "one-shot" methods like tandem neural networks as
they must re-run optimization for each desired design. Unlike direct inversion, they are similar to
traditional iterative algorithms except that the forward model is replaced with a trained (and fixed)
neural network. These methods can be useful when it is difficult to calculate the gradients of the
forward model or when the speed of the optimization process needs to be increased. Building off
these methods, we use an iterative surrogate approach combined with a deep generative prior to
design the metasurface phase profile.

In the following work, we will first introduce the modeling and building of the physical optics
propagator surrogate and neural network optimizer in section 2. The results of phase optimization
are shown in section 3 and the design of the metasurface elements is introduced in section 4.
Finally, we will discuss the results and conclude this work in sections 5.

2. Metasurface phase optimization process

To begin, we set the clear aperture diameter Dap to 6 mm and the distance Zprop to 20 mm, and
assume a field of view (FOV) of 16° on the image deflector. These specifications are chosen
arbitrarily. For the convenience of demonstration, we restrict the rotation to along one axis,
such that we can speed up the simulation by taking advantage of the symmetry of our system.
However, the method can be extended to cases with an arbitrary rotated image plane.

Our ANN phase optimization process is a two step framework where two neural networks
work in tandem to produce a phase distribution that results in the highest image quality. We
assess image quality by evaluating the point spread functions (PSFs) of the imaging system. One
network serves as a surrogate model for the off-axis field propagation and can be used repeatedly
for new design problems once training is complete. This network is trained first on a set of paired
data mapping phase profiles to PSFs. The other network takes the place of the Zernike coefficient
parameterization and is retrained for each new design problem. Here, Zernike polynomials
are chosen to represent the phase profile due to their good mathematical properties in defining
functions in a circular domain (see Supplement 1) and to prevent high spatial frequency solutions.

As shown in Fig. 2, a randomly initialized and fixed tensor is the input to a generative neural
network. The generative network produces a set of Zernike coefficients that represent a phase
profile. Then, a physical optics propagator (POP) evaluates the PSFs produced by this phase
profile for a series of angles covering the image plane field of view. We evaluate PSFs in terms
of root-mean-square (RMS) radius and eccentricity. The RMS radius is defined as:

R =

√︄∬ S

0
r2I (r, θ) dr dθ

/︃ ∬ S

0
I (r, θ) dr dθ (1)

where I (r, θ) is the intensity distribution in a polar coordinate and S is the area around the
centroid of the PSF. The RMS radius evaluates the confinement of energy. The eccentricity, E,
is the ratio of the distance between the foci and its major axis length after fitting I (r, θ) to an
elliptical function. The eccentricity indicates the symmetry of the PSF shape. An ideal PSF is
focused and rotationally symmetry with a small R and E = 0. The chosen cost function for our
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optimization process is defined as the following:

L =
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Ei + φ σE

2
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where Ri is the RMS radii and Ei denotes the eccentricity. α, ρ, and φ are the weighting terms.
The variance terms are added to ensure that there are not large differences in PSF quality across
different angles, which would lead to distorted image quality across the FOV. Additionally, this
prevents the optimization process from finding a global minimum where one PSF is prioritized
over all others. The training process iterates until the cost function is minimized. Note that the
use of the generative network leads to a better global minimum and more consistent results when
compared to direct optimization (Fig. S4). It has been demonstrated that untrained, generative
neural networks can serve as good priors for solving inverse problems [33].
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Fig. 2. Optimization pipeline of the NN inverse design process. Step 1 trains a NN
POP surrogate to predict the qualities of the PSFs with a set of Zernike coefficients (Z1
to Zn). Step 2 uses a generative neural network and the trained POP surrogate to find a
set of Zernike coefficients that maximize the quality of the PSFs.

where 𝑅𝑖 is the RMS radii and 𝐸𝑖 denotes the eccentricity. 𝛼, 𝜌, and 𝜑 are the weighting terms.118
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Fig. 2. Optimization pipeline of the NN inverse design process. Step 1 trains a NN POP
surrogate to predict the qualities of the PSFs with a set of Zernike coefficients (Z1 to Zn).
Step 2 uses a generative neural network and the trained POP surrogate to find a set of Zernike
coefficients that maximize the quality of the PSFs.

In this work, we trained an ANN POP surrogate to replace the slow and non-differentiable
off-axis POP implemented in MATLAB. To generate the training data, a free-space angular
spectrum method (ASM) for scalar diffraction between non-parallel planes is constructed. To
simulate the beam aberration correctly, the ASM POP will first transform the spatial frequency
spectrum (K-spectrum) of the aperture in the source coordinate into the rotated coordinate of the
image plane, as shown in Fig. 3.

Numerically, the rotation operation has two effects: 1) the frequency components of the
source field is shifted when observed in the rotated coordinate, and 2) the rotation distorts the
equidistant-sampled spatial frequencies and requires an interpolation to form a regular grid of
frequencies for simulation. To ensure fidelity in the interpolated spectrum and avoid aliasing in
the real space, non-parallel ASM requires fine sampling of the field and intensive computation.
In this work, the non-uniform fast Fourier transform (NUFFT) algorithm is adopted to combine
the FFT and interpolation to accelerate the computation [34,35]. At the time of this study, there
is no stable integration of NUFFT with deep-learning frameworks. Hence, we use a learned
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Fig. 3. Illustration of K-spectrum rotation in the off-axis ASM POP. The tilt phase
deflects the image to an off-axis angle and the aberration correction phase reduces the
aberration introduced during the. The ASM POP first simulates the off-axis image
aberration by transforming the K-spectrum at the input coordinate in the rotated output
coordinate. During this process, the spectrum is shifted to the low-K region. Then, a
regular paraxial ASM can be applied to simulate the final image.
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(d)-(f) are the corresponding images formed with the NN PSFs and (g)-(i) are those with the169
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Fig. 3. Illustration of K-spectrum rotation in the off-axis ASM POP. The tilt phase deflects
the image to an off-axis angle and the aberration correction phase reduces the aberration
introduced during the deflection ASM POP first simulates the off-axis image aberration by
transforming the K-spectrum at the input coordinate in the rotated output coordinate. During
this process, the spectrum is shifted to the low-K region. Then, a regular paraxial ASM can
be applied to simulate the final image.

ANN POP surrogate, which is differentiable and fast. Once the training in step 1 is complete, we
freeze the weights of the trained NN POP and use it for step 2.

Taking advantage of the system’s vertical symmetry, we evaluate half of the FOV at six field
angles, i.e., (0°, 8°), (0°, 0°), (0°, −8°), (4°, 4°), (4°, −4°), and (8°, 0°), expressed in a Cartesian
coordinate. For the same reason, only the first eight Zernike polynomials with vertical axis
symmetry are used. The piston phase (Z0) is excluded.

As a reference, a model with the same geometry is also optimized in Zemax OpticStudio
with the provided global optimization tool. The metasurface phase element is modeled as a
Zernike standard phase surface with the same Zernike polynomials as the NN phase optimization.
The process includes a 48-hour-long global optimization followed by a 10-hour-long Hammer
optimization. Details of the non-parallel ASM POP, neural networks, and Zemax optimization
can be found in the supplementary material.

3. Results and comparison

Figure 4 compares the six PSFs of Zemax optimization (Zemax PSFs, first column) with those of
the neural network (NN PSFs, second column). The Zemax PSFs are simulated with Zemax POP.
The NN PSFs are simulated with our custom-built non-parallel ASM POP. The third column
shows the NN PSFs simulated with the Zemax POP as a verification of our POP substitute. Details
of the Zemax POP for PSF simulations are included in the supplementary material. Overall, the
Zemax PSFs have smoother intensity distributions with cleaner backgrounds. However, the NN
PSFs show a rounder intensity distribution, albeit with halos, around a tightly focused PSF cores.
Statistically, The RMS radii of the NN PSFs are relatively constant at all field angles, while the
Zemax PSFs grow larger as the field angle increases, as indicated in Table 1. In terms of the
shape of the PSF, the NN PSFs are more rotationally symmetric compared to the Zemax PSFs, as
indicated by the eccentricities.

Lastly, we simulate full field-of-view images to visually assess the imaging quality on the
off-axis sensor. As the PSF varies across the FOV, with a given phase profile, the Zemax Image
Simulation tool simulates the PSFs of 19 (horizontal) × 25 (vertical) incident angles within the
16°×16° FOV, and then generates images via a pixel-interpolated spatially varying convolution
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Fig. 4. PSF comparison: Zemax PSFs (first column) and NN PSFs simulated with
non-parallel ASM POP (second column) and Zemax POP (third column). Scale bar:
300 µm.

Fig. 4. PSF comparison: Zemax PSFs (first column) and NN PSFs simulated with non-
parallel ASM POP (second column) and Zemax POP (third column). Scale bar: 300
µm.
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Table 1. RMS Radii and Eccentricities

Field (0,−8) (0, 0) (0, 8) (4,−4) (4, 4) (8, 0)
N

N RMS spot sizea(µm) 336.18 273.14 309.38 303.30 314.74 309.06

Eccentricities 0.94 0.66 0.42 0.84 0.3 0.4

Ze
m

ax RMS spot size (µm) 305.75 157.40 430.59 557.40 843.24 512.82

Eccentricities 0.97 0.98 0.24 0.97 0.88 0.94

aRMS spot size: the root-mean-square diameter of a PSF.

algorithm. The results are shown in Fig. 5. Among them, Fig. 5(a)-(c) span the FOV of 16°.
(d)-(f) are the corresponding images formed with the NN PSFs and (g)-(i) are those with the
Zemax PSFs. Asymmetric pincushion distortion and stretching are observed in these images,
which is the combined outcome of imaging with a flat sensor and the existence of a strong tilt
phase in the metasurface. The phase tilt deflects the image to 41° and causes the ray angle
to rotate non-linearly to the incident angle, resulting in different magnification as field height
varies. As is shown in Fig. 5, the images from the Zemax PSFs have good contrast. However, the
vertical resolution degrades quickly at large field angles, rendering the fine details in this direction
unrecognizable. In comparison, the fine features, such as texts and lines, can still be recognized
across the full FOV in the images from the NN PSFs, as a result of each PSF possessing a bright
center. In terms of the halos, the large pixel size averages the intensity quickly and forms a rather
uniform background behind the details. This background can be easily removed with simple
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Fig. 5. Simulated images with the optimized PSFs. Left panel: (a)-(c) Objects spanning
16° FOV. (d)-(f) Images simulated with the NN PSFs. (g)-(i) Images simulated with the
Zemax PSFs. Right panel: zoom-in images of crop regions on (d)-(i) (yellow dotted
boxes). Among them, figures (1)-(3) are corresponding to (d)-(f), respectively. So are
figures (4)-(6) to figures (g-i). Logos of UCSD Geisel Library and Triton Athletics are
used with permission from the University of California San Diego.
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Fig. 5. Simulated images with the optimized PSFs. Left panel: (a)-(c) Objects spanning
16° FOV. (d)-(f) Images simulated with the NN PSFs. (g)-(i) Images simulated with the
Zemax PSFs. Right panel: zoom-in images of crop regions on (d)-(i) (yellow dotted boxes).
Among them, Fig. (1)–(3) are corresponding to (d)-(f), respectively. So are Fig. (4)–(6) to
figures (g-i). Logos of UCSD Geisel Library and Triton Athletics are used with permission
from the University of California San Diego.
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digital image processing algorithms. To summarize, our NN optimized phase profile leads to
images with better resolution and less distortion. The final optimized radii and eccentricities of
the NN-PSFs are shown in Table 1.

4. Optimized phase profile and metasurface design

In this study, a dielectric metasurface with high transmission efficiency is designed. The
metasurface is composed of silicon (n = 3.5) nanoposts on a fused silica substrate (n = 1.44).
The lattice period (P) is 660 nm and the height (H) of the nanoposts is 1550 nm, as shown in 6.
The metasurface has similar phase responses in both TE and TM polarization, as indicated by
Fig. 6(c). The simulation of the metasurface unit cell response is carried out with the wave optics
module on COMSOL Multiphysics. Periodic boundary conditions are applied to four lateral
sides of the simulation domain. Light is injected from a port at the top of the domain at an angle
of 41°. The transmission coefficient is calculated with a receiving port at the bottom.

images with better resolution and less distortion. The final optimized radii and eccentricities of181

the NN-PSFs are shown in Table 1.182

4. Optimized phase profile and metasurface design183

In this study, a dielectric metasurface with high transmission efficiency is designed. The184

metasurface is composed of silicon (𝑛 = 3.5) nanoposts on a fused silica substrate (𝑛 = 1.44).185

The lattice period (𝑃) is 660 nm and the height (𝐻) of the nanoposts is 1550 nm, as shown in186

6. The metasurface has similar phase responses in both TE and TM polarization, as indicated

P

D

H

(a) (b)

(c)

SiO2

Si

100 150 200 250 300
Post diameter (nm)

0

100

200

300

400

Ph
as

e 
(°)

TE
TM
TE
TM

100 150 200 250 300
Post diameter (nm)

1450

1500

1550

1600
Po

st
 h

ei
gh

t (
nm

)

0
0

45
45

90
90

135
135

180
180

225
225

270
270

315
315

360
360

0

0.2

0.4

0.6

0.8

1

Fig. 6. Metasurface design. (a) The geometry of the nanoposts. (b) The transmittance
and phase as functions of the diameter (D) and height (H) of the nanopost. The solid
background color denotes the transmittance and overlaid are the phase contours. (c)
Phase response as functions of the nanopost diameter with TE and TM polarized light
incident at 41°.

187

by Fig. 6 (c). The simulation of the metasurface unit cell response is carried out with the wave188

optics module on COMSOL Multiphysics. Periodic boundary conditions are applied to four189

lateral sides of the simulation domain. Light is injected from a port at the top of the domain at an190

angle of 41°. The transmission coefficient is calculated with a receiving port at the bottom.191

The optimized phase profile is a sum of a strong linear phase for image deflection and a phase192

with a trefoil shape for aberration correction, as shown in Fig. 7 (a). To ensure phase fidelity,193

in the design we separate the linear phase from the sum. The former can be realized with a194

transmission grating with a groove density of 0.43 linepairs per micron. As a result, the residual195

aberration-correction phase has a much slower phase variation with a maximum phase gradient196

of 0.14 waves per micron, as shown in (b), corresponding to at least 10 phase steps per 2𝜋 phase197

change with the above mentioned metasurface unit cell design. During fabrication, the grating198

and metasurface can be made on both sides of the same substrate with a negligible gap.199

Fig. 6. Metasurface design. (a) The geometry of the nanoposts. (b) The transmittance and
phase as functions of the diameter (D) and height (H) of the nanopost. The solid background
color denotes the transmittance and overlaid are the phase contours. (c) Phase response as
functions of the nanopost diameter with TE and TM polarized light incident at 41°.

The optimized phase profile is a sum of a strong linear phase for image deflection and a phase
with a trefoil shape for aberration correction, as shown in Fig. 7(a). To ensure phase fidelity,
in the design we separate the linear phase from the sum. The former can be realized with a
transmission grating with a groove density of 0.43 linepairs per micron. As a result, the residual
aberration-correction phase has a much slower phase variation with a maximum phase gradient
of 0.14 waves per micron, as shown in (b), corresponding to at least 10 phase steps per 2π phase
change with the above mentioned metasurface unit cell design. During fabrication, the grating
and metasurface can be made on both sides of the same substrate with a negligible gap.
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5. Discussion and conclusion200

In this work, we demonstrate a large-angle off-axis image relaying method based on a metasurface.201

This method describes the image relay between the input and the image shown in Fig. 1, and can202

be applied to systems with more complicated designs. In those designs, the fields can be traced203

with the appropriate propagator and every element becomes the image plane and input plane204

alternatively, such that the starting-point design of a system can be rid of laborious hand-tuning205

and be optimized in a highly automated style.206

The proposed method can be improved in several ways. First, the system becomes more207

asymmetric rotationally as the off-axis angle increases and more aberration is expected. With the208

Zernike basis and the current data-driven model, more polynomials should be added to reduce the209

fitting errors, which increases the size of the dataset needed for the POP surrogate training. To210

reduce the data preparation time, one can use basis that represent the aberration more efficiently211

with fewer orders. Second, the weighting parameters in the training loss function are chosen212

empirically. In future work, a fully differentiable physical model could be used to simulate image213

quality and achieve an end-to-end optimization of the optics without user input.214

To conclude, we present a solution for aberration correction in arbitrary-angle image-relay215

systems by utilizing an inverse-designed dielectric metasurface. The aberrations in the relayed216

image at large angles are reduced noticeably. Compared to Zemax optimization, the ANN predicts217

PSFs with smaller sizes and similar resolutions in both direction. The use of the metasurface has218

enabled us to overcome the limitations posed by traditional optics and achieve a lightweight and219

small system. With the ongoing interdisciplinary studies of nanophotonics and computational220

optical design, we believe that this work will inspire further development of novel optical system221

design in a wide range of applications.222
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5. Discussion and conclusion

In this work, we demonstrate a large-angle off-axis image relaying method based on a metasurface.
This method describes the image relay between the input and the image planes shown in Fig. 1,
and can be applied to systems with more complicated designs. In those designs, the fields can
be traced with the appropriate propagator and every element becomes the image plane and
input plane alternatively, such that the starting-point design of a system can be rid of laborious
hand-tuning and be optimized in a highly automated style.

The proposed method can be improved in several ways. First, the system becomes more
asymmetric rotationally as the off-axis angle increases and more aberration is expected. With the
Zernike basis and the current data-driven model, more polynomials should be added to reduce the
fitting errors, which increases the size of the dataset needed for the POP surrogate training. To
reduce the data preparation time, one can use basis that represent the aberration more efficiently
with fewer orders. Second, the weighting parameters in the training loss function are chosen
empirically. In future work, a fully differentiable physical model could be used to simulate image
quality and achieve an end-to-end optimization of the optics without user input.

To conclude, we present a solution for aberration correction in arbitrary-angle image-relay
systems by utilizing an inverse-designed dielectric metasurface. The aberrations in the relayed
image at large angles are reduced noticeably. Compared to Zemax optimization, the ANN predicts
PSFs with smaller sizes and similar resolutions in both direction. The use of the metasurface has
enabled us to overcome the limitations posed by traditional optics and achieve a lightweight and
small system. With the ongoing interdisciplinary studies of nanophotonics and computational
optical design, we believe that this work will inspire further development of novel optical system
design in a wide range of applications.
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