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Dark-field microscopy (DFM) is a powerful label-free and high-contrast imaging technique due to its

ability to reveal features of transparent specimens with inhomogeneities. However, owing to the Abbe’s

diffraction limit, fine structures at sub-wavelength scale are difficult to resolve. In this work, we report a

single image super resolution DFM scheme using a convolutional neural network (CNN). A U-net based

CNN is trained with a dataset which is numerically simulated based on the forward physical model of the

DFM. The forward physical model described by the parameters of the imaging setup connects the object

ground truths and dark field images. With the trained network, we demonstrate super resolution dark field

imaging of various test samples with twice resolution improvement. Our technique illustrates a promising

deep learning approach to double the resolution of DFM without any hardware modification.

Introduction

Label-free imaging techniques have been developed for many
decades and widely applied in life science due to their non-inva-
sive and non-toxic approach to biological samples.1 Dark-field
microscopy (DFM) is an important label-free imaging method
used in biology, material science and other disciplines, which
offers high contrast for a wide range of unstained specimens.2–4

In DFM configuration, the illumination light beam becomes
hollow and oblique after passing through the dark field ring
and condenser, in which case only the light scattered by the
objects can be detected.5 As a result, compared with bright-field
microscopy, it emphasizes high spatial frequency information
and enhances image contrast by highlighting the discontinu-
ities or edges of the object, while the uniform regime remains
dark.6–9 Due to its simple configuration and effective imaging
performance, DFM is widely used in revealing outlines of
unstained objects. However, the resolution of traditional DFM
is diffraction-limited by the detection optics.

Although many excellent super resolution imaging methods
have emerged in the past few decades,10–14 most of them focus
on fluorescent imaging and cannot be applied to scattering
DFM. Structured illumination microscopy (SIM) is a successful

super resolution fluorescent imaging technique using a series
of excitation light patterns to encode the high-resolution infor-
mation into the observed images.15 Label-free SIM has also
been developed in recent years for super resolution imaging
but with much less impressive resolution improvement.16

Fourier ptychographic microscopy using a light emitting diode
array to illuminate the label-free sample with different angles
achieves resolution improvement with synthesized
aperture,17,18 which could be potentially applied to super-
resolution DFM. However, both of them require large modifi-
cation of the DFM setup and need multiple images to recon-
struct a super-resolution image.

In recent years, deep learning (DL) has dramatically influ-
enced the optical imaging field and gained great success in
solving the complex inverse problem.19–23 In contrast to tra-
ditional reconstruction methods which typically require expli-
cit mathematical model to find an analytical solution, the DL
neural network relies on large datasets to learn by itself to
solve the complex inverse problems. Well-designed neural net-
works have been successfully implemented on reconstructions
of many super-resolution imaging techniques.24–27 Artificial
neural network accelerated photoactivated localization
microscopy (PALM) reconstructs a PALM image using much
less number of sub-images with similar performance, which
improved the imaging speed by 26 times.28 A generative adver-
sarial network (GAN) based framework transforms diffraction-
limited input images into super-resolved ones.29 These neural
networks improve the performance of existing imaging
methods in either speed or resolution. Nevertheless, in order
to optimize their weight and bias parameters for better per-
formance, these neural networks require large training data-
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sets which often need laborious experiment work.30,31 It’s also
worth noting that researchers has proposed neural networks
with no pre-training requirement in certain imaging
situations.32,33 By embedding the forward physical model of
imaging process, PhysenNet reconstructs phase image from a
single diffraction pattern.34 Ghost imaging using deep neural
network constraint (GIDC) was proposed to increase the
spatial resolution in ghost imaging.35 These physics-informed
neural networks avoid the training process at the expense of
slow reconstruction speed due to iteration process, which
makes real-time super resolution difficult to achieve. More dis-
cussion can be found in Supplement 1.

In this study, we propose a CNN based framework specifi-
cally designed to improve the resolution of single frame DFM
image in real time by retrieving the high spatial frequency
information acquired by oblique illumination without any
modification to a standard DFM setup. With the known
forward process of DFM, we numerically generate the training
dataset based on the parameters of the optical setup and
require no experimental images. The network is trained on the
simulated dataset to retrieve the high spatial frequency infor-
mation which is encoded in the dark field image. After train-
ing the network, we evaluate its performance on unseen simu-
lated images. Afterwards, we experimentally demonstrate the
super resolution reconstructions of the dark field images with
100 nm polystyrene beads acquired by a 50×/0.55 NA objective
lens. Furthermore, we perform super resolution image recon-
struction with dark field images of phase targets and HeLa
cells by using the trained CNN. This proposed framework
could be applied to any DFM setup for super-resolution with
only the knowledge of its illumination and detection para-

meters, which provides an appealing method for real-time
label-free super resolution dark field imaging.

Working principle

In DFM, the central part of the illumination is blocked by the
dark field ring, as shown in Fig. 1(a). After passing through
the condenser, the illumination light becomes oblique and
strikes the sample at an angle, in which case the objective can
only collect the scattered light from the object. Following the
idea of synthetic aperture,36,37 the angled illumination pattern
corresponding to a ring in Fourier space shifts the high spatial
frequency information of the object into the detection band-
width of the objective, as shown in Fig. 1(b). The highest
spatial frequency information attainable by the optical system
is restricted by the combination of numerical aperture (NA) of
both the illumination and detection objective. The high spatial
frequency information is encoded in the diffraction limited
dark field image. Thus, a super resolution image may be
reconstructed from the detected low resolution one by retriev-
ing the encoded high spatial frequency information (see
Fig. 1(c)). Since all the high spatial frequency information of
the object overlay and form a single diffraction limited dark
field image, retrieving the high resolution image is an extre-
mely ill-posed problem, which is very difficult to solve by tra-
ditional optimization methods.

To retrieve the high-resolution information, CNNs can be a
good choice because of their great performance in solving
complex inverse problems.38–40 In general case, to train a CNN,
a large amount of data from either experiment or simulation is

Fig. 1 Principle of CNN based super resolution dark field imaging method. (a) In DFM, oblique cone-shape illumination produced by a dark field
ring and a condenser interacts with the sample. Only the scattering light are detected by a charge-coupled device (CCD) camera. (b) Fourier space
relationship between the illumination light, detection range, and the actual information collected from the object. The circle centered on the origin
indicates the detection range of objective. Each translated information spectrum is centered on the illumination ring. (c) Super-resolved DFM image
may be reconstructed by a trained CNN with a single low-resolution dark field image as input.
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required to ensure its performance.41,42 Acquiring enough
experimental images for training could be time consuming.
Collecting ground truth images is even more difficult in most
cases. Here, we propose a simulation method based on the
synthetic aperture idea to generate pairs of low resolution and
super resolution DFM images with the knowledge of the optics
including the objective NA, the illumination angle and the
working wavelength.

With the DFM imaging setup shown in Fig. 1(a), we use a
45° angled illumination and a 50×/0.55 NA objective for both
simulation and experiment. Under incoherent light illumina-
tion, the dark field image can be regarded as a superposition
of multiple off-axis images generated by each point source illu-
mination on the illumination dark field ring. Each angled illu-
mination shifts the corresponding high-spatial frequency
information of the object into the detection bandwidth of the
objective, which is a low-pass filter in the Fourier plane as
shown in subset of Fig. 2(a). Considering incoherent illumina-
tion, the final low resolution dark field image ILR can be
regarded as a sum of images under each angled illumination
and approximately calculated as:

ILR ¼
Xm

i¼1

F�1½Eillu;iðfx; fyÞ � Oðfx; fyÞ � CTFðfx; fyÞ�
�� ��2 þ n

¼
Xm

i¼1

F�1½Oðfx þ fx;i; fy þ fy;iÞ � CTFðfx; fyÞ�
�� ��2 þ n;

ð1Þ

where Eillu,i = δ( fx,i, fy,i) is the Fourier transform of the illumi-
nation electrical field of the i-th angle, fx and fy are coordinates
in Fourier space, fx,i and fy,i are illumination position in
Fourier space, m = 30 is the total number of illumination
angles, ⊗ represents convolution operation, O is the object
spatial information, F−1 represents the inverse Fourier trans-
form, CTF is the coherent transfer function of the detection
optics and n is the additive noise. The larger the number m is
utilized, the better approximation of real experiment is
achieved. The low resolution images are added with white
Gaussian noise (signal-to-noise ratio 35) to match the experi-
ment condition before inputting to the neural network.

In a similar way, the super-resolution dark field image ISR
containing all detectable high-k information of the object, can
be calculated as:

ISR ¼
Xm

i¼1

F�1½Oðfx; fyÞ � CTFðfx � fx;i; fy � fy;iÞ�
�� ��2: ð2Þ

As shown in Fig. 2(a), the effective optical transfer function
(OTF) of the super-resolved dark field image is a combination
of a series of OTFs which are generated by angled illumination.
Thus, the highest spatial frequency in the super resolution
image corresponds to the combination of the NA of illumina-
tion and detection. For each object, simulated ILR and ISR are
used as input and label images respectively to train the neural
network, as shown in Fig. 2(b) and (c).

Fig. 2 Simulation method for dataset generation and simulation performance. (a) Effective OTF used in simulation. Each subset image represents
the effective OTF of the dark field microscopy under each illumination angle. The big donut-shaped OTF shows the effective OTF of the cone-light
illuminated dark field microscopy. (b and c) Computational simulated dark field images and super-resolved dark field images which compose the
training dataset. N indicates the size of the dataset. (d) Unseen simulated low resolution dark field image input to the trained network. (e) Output
super resolution image of the network. (f ) Simulated ground truth super resolution image. Scale bar, 1 μm.
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In this work, we use a U-net structure to solve the complex
inverse problem. The input low resolution images passing
through a down-sampling (encoder) part and an up-sampling
(decoder) part are transformed into high-resolution output
images. Rectified linear units (ReLU) are used between each
convolutional layers to avoid gradient vanishing and exploding
problem.43 We also use adaptive moment estimation (Adam)
as optimizer to compute adaptive learning rate for each para-
meter with the learning rate set to 0.0001.44 The output super
resolution images are compared with the ground truth images
using both multi-scale structure similarity index measure
(MS-SSIM) and L1-norm.45 The combined loss function of
both MS-SSIM loss and L1 loss is given as:

L ¼ α � LSSIM þ ð1� αÞ � L‘1 ð3Þ
with α = 0.8, which is determined after parameter optimization
as shown in ESI 1, Fig. S1.† In addition, more information of
the U-Net architecture can also be found in ESI 1, Fig. S1.†
After training the neural network with simulated dataset
which consists of 3000 pairs of low resolution and super
resolution images, the unseen dataset is processed by the
trained network as a test. The performance of the network is
shown in Fig. 2(d–f ). By comparing the network output with
ground truth image, it is obvious to notice that the diffraction
limited features can be clearly resolved in the output image,
which match well with the ground truth. We used structure
similarity index measure (SSIM) to evaluate the quality of
network reconstructed super resolution image, which gives a
SSIM of 0.982 ± 0.013 compared to ground truth.

Methods
Dataset preparation and network training

The simulation ground truth images include random distribu-
ted scattering particles and fibers generated numerically with
different size and length. The low resolution dark field images
and super resolution dark field images are then simulated
based on eqn (1) and (2) using MATLAB. The neural network
architecture is explained in detail in ESI 1, Fig. S1.†
Simulation dataset was numerically generated and processed
using MATLAB R2020b. The training dataset contains 3000
pairs of simulated images. The batch size was set to be 15.
Input images were cropped to be 256 × 256 in size. The train-
ing and testing were run on a desktop computer equipped
with a NVIDIA GeForce GTX2070S graphic cards and a Core i7-
9700K CPU@3.6 GHz.

Polystyrene bead preparation and characterization

Coverslips were cleaned with acetone under sonication for
10 minutes followed by rinsing with isopropanol and de-
ionized water. 100 nm polystyrene beads (Invitrogen, USA)
were then drop-casted on the cleaned coverslip and dried
before imaging experiment. After the optical imaging experi-
ment, 20 nm Cr was sputtered on the sample for SEM
characterization.

Cell preparation

HeLa cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum
(Life Technologies, Waltham, MA), 1% penicillin–streptomycin
(Life Technologies), and 2 mM glutamine in 5% CO2 at 37 °C.
2 × 105 cells were seeded in each well of a 6-well plate at which
clean BK7 glass substrates were placed. After removing the
medium, fixation for 15 minutes with 4% paraformaldehyde
solution in phosphate buffered saline (PBS) at 4 °C was fol-
lowed. The sample was washed with PBS and dehydrated for
imaging.

Results

With the neural network trained on simulated dataset, we test
its performance over experimental data. The DFM imaging
setup shown in Fig. 1(a) is utilized to acquire low resolution
dark field images. A 532 nm laser guided by a multi-mode
fiber is used for illumination and a CCD camera (iXon 897,
Andor) is used to record images. To be consistent with simu-
lation, we use multi-mode fiber vibrated by an eccentric rotat-
ing mass motor and long exposure time of camera to reduce
the coherency of the illumination. Experiment results with
polystyrene beads are shown in Fig. 3. Polystyrene beads with
100 nm diameter are drop-casted onto a glass substrate as

Fig. 3 Trained U-Net performance on experimental data with 100 nm
polystyrene beads. (a) Low resolution dark field images. Scale bar, 1 μm.
(b) Output of the network. (c, d, f and g) Magnified small region-of-
interest. (e and h) SEM ground truth images used for confirming the
accuracy of the network output. Scale bar, 500 nm.
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imaging object. Two beads with a separation of around
260 nm can be resolved as shown in Fig. 3(d). The network
output matches well with the SEM shown in Fig. 3(e).
Considering our imaging setup with 50×/0.55 NA objective lens
and 45° angled illumination, the maximum effective NA of the
imaging setup is 1.26, which agrees well with the resolution in
experiment. Compared with the noisy input images, the
output images also show that our network has good perform-
ance in suppressing the noise.

In addition, we apply the network to DFM images of a
phase object (Quantitative phase microscopy target,
Benchmark Technologies) including a grating pattern and a
1951 USAF resolution pattern. In this case, we illuminate the
sample with a 530 nm LED (M530L4, Thorlabs). Compared
with the experiments with polystyrene beads, the phase targets
have more complex structures. Nevertheless, as shown in
Fig. 4, defects of the phase objects are clearly resolved with a
two-point resolution of ∼220 nm, which is on the same level as
the experiment results shown in Fig. 3.

Next, we apply the same trained network to HeLa cells
which have more complex structures and have never been seen
by the network. The image acquisition setup remains the same
as the experiment in Fig. 3. Compared with the input low
resolution images and the denoised low resolution images, the
network output images shown in Fig. 5(g–i) clearly resolve the
major features of the HeLa cells. As illustrated by the cross-
section profile in Fig. 5(g–i), structures with around 280 nm

separation are clearly separated. Fourier spectrums of the low-
resolution and super-resolution dark field images are then
used to confirm the ∼2 times resolution improvement, as
shown in ESI 1, Fig. S2.†

Discussion and conclusion

Several approaches can be applied to the proposed technique
to further improve its performance. In our scheme, the resolu-
tion improvement is limited by the NA of both the illumina-
tion and detection objective. Thus, the resolution can be
further improved by using higher illumination lateral wavevec-
tor to extract higher spatial frequency information of the
object. For example, localized plasmonic structures have been
used to excite the object with higher wavevector for super
resolution imaging.47 In the meantime, since the forward dark
field imaging process can be estimated and computed numeri-
cally, the network structure can also be modified based on the
physical model. Recently, the physics-informed neural net-
works have been studied to solve the inverse problem with the
knowledge of forward process, which can be applied to our
scheme to improve the generalization of the network in the
future with sacrificed speed of reconstruction due to
iterations.34,35

Although our technique has good performance on the
experimental objects including beads and cells, we have to
note that there are still some limitations. During the simu-
lation process, the objects are considered as two-dimensional

Fig. 4 Trained network performance on experiment data with phase
objects. (a–c) Dark field images of the phase object acquired with a
50×/0.55 NA objective. (a) A grating pattern (b and c) USAF resolution
targets. (d–f ) Denoised low resolution dark field images with nonlocal
filtering methods.46 (g–i) Network output SR images. Scale bar, 1 µm. All
the cross-section profiles are magnified twice for better visualization.

Fig. 5 Trained U-Net performance on experiment data with HeLa cells.
(a–c) Dark field images acquired with 50×/0.55 NA objective. (d–f )
Denoised low resolution images using nonlocal filtering method. (g–i)
Network output. Scale bar, 1 μm. All the cross-section profiles are
magnified twice for better visualization.
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objects with isotropic scattering coefficient. This assumption
works well with thin objects like beads in Fig. 3 with almost
no artifact in the output images. However, when it comes to
thicker cell samples, we may miss some information. In this
case, scattering of three dimensional structures need to be
considered in simulation for better accuracy which will make
the simulation more complex.48,49

In conclusion, we propose and demonstrate a deep learning
based framework specifically designed to enhance the resolu-
tion in dark-field microscopy. Simulation datasets containing
both low resolution and high resolution images are generated
based on only a few parameters of the traditional DFM. A
U-net is trained on the simulated dataset to reconstruct super
resolution dark-field images from the low-resolution experi-
ment images. The network tested with both simulation data
and experiment data shows ∼2 times improvement in resolu-
tion. One of the major advantages of the proposed technique
is that a massive dataset from experiment which is usually
required in data-driven neural network is not necessary for
training. Thus, with the knowledge of the optical parameters,
this technique can be easily applied to any DFM without modi-
fication to the setup and doubles the resolution for the label-
free dark-field imaging. We believe our technique will benefit
biomedical and chemical studies a lot with the easily obtain-
able resolution enhancements.
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github.com/ML-UCSD/DLDFM.git.

Author contributions

M. L. and Z. L. conceived the project. M. L. performed simu-
lation and all data analysis. M. L. and J. Zhao conducted bead
experiments. M. L. and J. Zhou conducted phase target
experiments. M. L. and H. L. performed cell
experiments. M. L., J. Zhao and J. Zhou wrote the manuscript.
All authors discussed and commented on the
manuscript. Z. L. supervised the project.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

This work was supported by the Gordon and Betty Moore
Foundation (Grant No. 5722). We acknowledge Woo Joong
Rhee and Prof. Jeon-Soo Shin at the Department of
Microbiology, Yonsei University College of Medicine for pre-
paring fixed HeLa cells.

References

1 R. E. Leighton, A. M. Alperstein and R. R. Frontiera, Annu.
Rev. Anal. Chem., 2022, 15, 37–55.

2 P. F. Gao, G. Lei and C. Z. Huang, Anal. Chem., 2021, 93,
4707–4726.

3 T. Horio and H. Hotani, Nature, 1986, 321, 605–607.
4 I. Ishmukhametov, L. Nigamatzyanova, G. Fakhrullina and

R. Fakhrullin, Anal. Bioanal. Chem, 2022, 414, 1297–1312.
5 H. Sherman, S. Klausner and W. A. Cook, Angiology, 1971,

22, 295–303.
6 J. Zhou, H. Qian, C.-F. Chen, J. Zhao, G. Li, Q. Wu, H. Luo,

S. Wen and Z. Liu, Proc. Natl. Acad. Sci. U. S. A., 2019, 116,
11137–11140.

7 H. Hu, C. Ma and Z. Liu, Appl. Phys. Lett., 2010, 96, 113107.
8 J. Zhou, H. Qian, J. Zhao, M. Tang, Q. Wu, M. Lei, H. Luo,

S. Wen, S. Chen and Z. Liu, Natl. Sci. Rev., 2021, 8,
nwaa176.

9 J. Ling, Y. Wang, X. Liu and X. Wang, Opt. Lett., 2021, 46,
1265–1268.

10 E. Betzig, A. Lewis, A. Harootunian, M. Isaacson and
E. Kratschmer, Biophys. J., 1986, 49, 269–279.

11 M. J. Rust, M. Bates and X. Zhuang, Nat. Methods, 2006, 3,
793–796.

12 E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser,
S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-
Schwartz and H. F. Hess, Science, 2006, 313, 1642–1645.

13 K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn and
S. W. Hell, Nature, 2006, 440, 935–939.

14 Z. Liu, H. Lee, Y. Xiong, C. Sun and X. Zhang, Science,
2007, 315, 1686–1686.

15 M. G. Gustafsson, J. Microsc., 2000, 198, 82–87.
16 J. Chen, Y. Xu, X. Lv, X. Lai and S. Zeng, Opt. Express, 2013,

21, 112–121.
17 G. Zheng, R. Horstmeyer and C. Yang, Nat. Photonics, 2013,

7, 739–745.
18 X. Ou, G. Zheng and C. Yang, Opt. Express, 2014, 22, 4960–

4972.
19 Y. Rivenson, Z. Göröcs, H. Günaydin, Y. Zhang, H. Wang

and A. Ozcan, Optica, 2017, 4, 1437–1443.
20 A. Sinha, J. Lee, S. Li and G. Barbastathis, Optica, 2017, 4,

1117–1125.
21 O. Ronneberger, P. Fischer and T. Brox, U-net:

Convolutional networks for biomedical image segmenta-
tion, Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015, 18th International Conference,
Springer International Publishing, Munich, Germany,
2015, 234–241.

22 G. Barbastathis, A. Ozcan and G. Situ, Optica, 2019, 6, 921–
943.

23 W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai and
Y. Liu, Nat. Photonics, 2021, 15, 77–90.

24 Y. Han, L. Sunwoo and J. C. Ye, IEEE Trans. Med. Imaging,
2019, 39, 377–386.

25 T. Nguyen, Y. Xue, Y. Li, L. Tian and G. Nehmetallah, Opt.
Express, 2018, 26, 26470–26484.

Paper Nanoscale

4708 | Nanoscale, 2024, 16, 4703–4709 This journal is © The Royal Society of Chemistry 2024

https://github.com/ML-UCSD/DLDFM.git
https://github.com/ML-UCSD/DLDFM.git
https://github.com/ML-UCSD/DLDFM.git
https://github.com/ML-UCSD/DLDFM.git


26 E. Nehme, L. E. Weiss, T. Michaeli and Y. Shechtman,
Optica, 2018, 5, 458–464.

27 Z. Meng, L. Ding, S. Feng, F. Xing, S. Nie, J. Ma, G. Pedrini
and C. Yuan, Opt. Express, 2020, 28, 34266–34278.

28 W. Ouyang, A. Aristov, M. Lelek, X. Hao and C. Zimmer,
Nat. Biotechnol., 2018, 36, 460–468.

29 H. Wang, Y. Rivenson, Y. Jin, Z. Wei, R. Gao, H. Günaydın,
L. A. Bentolila, C. Kural and A. Ozcan, Nat. Methods, 2019,
16, 103–110.

30 B. Sahiner, A. Pezeshk, L. M. Hadjiiski, X. Wang,
K. Drukker, K. H. Cha, R. M. Summers and M. L. Giger,
Med. Phys., 2019, 46, e1–e36.

31 A. A. Mohamed, W. A. Berg, H. Peng, Y. Luo,
R. C. Jankowitz and S. Wu, Med. Phys., 2018, 45, 314–321.

32 F. Wang, C. Wang, C. Deng, S. Han and G. Situ, Photonics
Res., 2022, 10, 104–110.

33 R. Heckel and M. Soltanolkotabi, Compressive sensing
with un-trained neural networks: Gradient descent finds a
smooth approximation, International Conference on
Machine Learning. PMLR, 2020, 4149–4158.

34 F. Wang, Y. Bian, H. Wang, M. Lyu, G. Pedrini, W. Osten,
G. Barbastathis and G. Situ, Light: Sci. Appl., 2020, 9, 1–7.

35 F. Wang, C. Wang, M. Chen, W. Gong, Y. Zhang, S. Han
and G. Situ, Light: Sci. Appl., 2022, 11, 1.

36 M. Karaman, P.-C. Li and M. O’Donnell, IEEE Trans.
Ultrason. Ferroelectr. Freq. Control, 1995, 42, 429–442.

37 W. Luo, A. Greenbaum, Y. Zhang and A. Ozcan, Light: Sci.
Appl., 2015, 4, e261–e261.

38 A. Lucas, M. Iliadis, R. Molina and A. K. Katsaggelos, IEEE
Signal Process. Mag., 2018, 35, 20–36.

39 J. Adler and O. Öktem, Inverse Probl., 2017, 33,
124007.

40 S. Li, M. Deng, J. Lee, A. Sinha and G. Barbastathis, Optica,
2018, 5, 803–813.

41 F. Lv, Y. Li and F. Lu, Int. J. Comput. Vis., 2021, 129, 2175–
2193.

42 W. Ma, F. Cheng and Y. Liu, ACS Nano, 2018, 12, 6326–
6334.

43 X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier
neural networks, Proceedings of the fourteenth inter-
national conference on artificial intelligence and statistics,
JMLR Workshop and Conference Proceedings, 2011,
315–323.

44 D. P. Kingma and J. Ba, 2014, arXiv preprint arXiv:.
45 H. Zhao, O. Gallo, I. Frosio and J. Kautz, IEEE Trans.

Comput. Imaging, 2016, 3, 47–57.
46 J. Darbon, A. Cunha, T. F. Chan, et al., Fast nonlocal filter-

ing applied to electron cryomicroscopy, 2008 5th IEEE
International Symposium on biomedical imaging: from
nano to macro. IEEE, 2008, 1331–1334.

47 J. L. Ponsetto, F. Wei and Z. Liu, Nanoscale, 2014, 6, 5807–
5812.

48 J. Q. Lu, P. Yang and X.-H. Hu, J. Biomed. Opt., 2005, 10,
024022.

49 T. Wriedt, J. Quant. Spectrosc. Radiat. Transfer, 2009, 110,
833–843.

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2024 Nanoscale, 2024, 16, 4703–4709 | 4709


	Button 1: 


