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Hyperbolic metamaterials for dispersion-assisted
directional light emission
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A novel method is presented to outcouple high spatial frequency (large-k) waves from hyperbolic meta-

materials (HMMs) without the use of a grating. This approach relies exclusively on dispersion engineering,

and enables preferential power extraction from the top or from the side of a HMM. Multilayer (ML) HMMs

are shown to be better suited for lateral outcoupling, while nanowire HMMs are the most convenient

choice for top outcoupling. A 6-fold increase in laterally extracted power is predicted for a dipole–HMM

system with a Ag/Si ML operating at λ = 530 nm, when metallic filling ratio is changed from an unopti-

mized to the optimized one. This new design concept supports the cost-effective mass production of

high-speed HMM optical transmitters.

1 Introduction

Hyperbolic metamaterials (HMMs) are a class of optical meta-
materials characterized by a uniaxial effective permittivity
tensor, with components parallel and perpendicular to the
optical axis that exhibit opposite signs.1–6 They are fabricated
predominantly in two configurations, as either a multilayer
stack (ML) or a nanowire array (NW). The first consists of alter-
nating metallic and dielectric (or semiconducting) layers of
deep sub-wavelength thickness, while in the second metallic
rods of deep sub-wavelength diameter and high aspect ratio
are embedded into a dielectric matrix. The value of the
effective permittivity components depends on the constituent
permittivities and the metal filling ratio, ρ, which is the volu-
metric percentage of metal in a unit cell of the ML or the NW.
The optical anisotropy of HMMs translates into hyperbolic dis-
persion, capable of supporting propagating waves with very
large wavevectors (or k-vectors): a unique feature that enables
several applications, including high-resolution imaging and
lithography,7–11 broadband absorption engineering,12,13

thermal control at the nanoscale,14 enhanced nonlinear pro-
cesses15,16 and spontaneous emission engineering17–26

The latter in particular is technologically relevant to the
field of high-speed optical communications. As pointed out in
a recent work,27 incoherent light sources with a spontaneous

emission rate enhanced via plasmonic28–30 or hyperbolic nano-
structures can achieve modulation speeds comparable to or
larger than those of coherent sources, at a lower manufactur-
ing and operational cost. The radiative spontaneous decay rate
of a quantum emitter (molecule, electron–hole pair in
quantum wells (QWs) or quantum dots (QDs)) γr = 1/τr, where
τr represents the radiative spontaneous emission lifetime,31

defines the upper bound to the 3dB electrical modulation
bandwidth, f3dB, of a light-emitting diode (LED), according to
the formula f3dB = (2πτr)−1 = (2π)−1γr.32 When such a quantum
light source is brought within the near field of a HMM, the
waves with large k-vectors contained in its emission spectrum
couple to the hyperbolic medium – which supports their
propagation – instead of decaying evanescently in the sur-
rounding environment (usually air). The local photonic
density of states (PDOS) accessible to the emitter is therefore
much larger in HMMs than in conventional media. Fermi’s
Golden Rule states that the enhancement in PDOS, quantified
by the Purcell Factor (PF), is proportional to the enhancement
in radiative spontaneous decay rate:6 because γr is proportional
to f3dB as shown above, we conclude that the emitter–HMM
coupling enhances the electrical modulation bandwidth. The
contextual increase in the data transmission rate of the emitter
(proportional to f3dB according to the Shannon Sampling
Theorem32) opens up a host of opportunities in high-speed
wireless (Light-Fidelity (Li-Fi),33 underwater34) and fiber-
optic35 communication.

Despite this high potential, two major challenges hinder
the practical usage of fast optical transmitters based on HMM
technology. Firstly, the discontinuous decrease in PDOS from
HMMs to their surrounding environment implies that their
interface with air suffers a remarkable impedance mismatch.
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As a consequence, large-k waves remain trapped inside hyper-
bolic media, unless a suitable mechanism is provided that
mediates the HMM-to-air transition. The traditional solution
described in the literature consists of milling through or
depositing on top of the HMM a sub-wavelength grating,
whose periodicity provides the matching k-vector required by
momentum conservation.22,23,36–39 Secondly, it is not trivial to
shape the far-field emission pattern of the light outcoupled
from HMMs. Directional control of emission is beneficial for
applications such as on-chip photonics, where light must be
switched in-plane and out-of-plane with respect to the chip
surface, and fiber-optic communication, where the optical
signal must be effectively channeled into the numerical aper-
ture of a multi-mode or single-mode fiber. To date, the only
outcoupling structure shown to control the emission pattern is
a bullseye grating.36,38

The existing approaches to address such challenges are
inadequate from a manufacturing standpoint. Adding a sub-
wavelength grating typically means extra time and cost in fabri-
cation: gratings are defined via focused ion-beam (FIB)22 or
electron-beam lithography,37,38 which are not economically
sustainable for mass production because of their limited
throughput. Furthermore, the optimum grating geometry
determined via analytical or numerical simulations is often
hardly achievable in practice with the above-mentioned tech-
niques. 1D gratings with rectangular cross-section have not
shown good directional control properties;22 bullseye gratings
extract radiation into a conical pattern,38 but it is not clearly
understood how to control and shape the emission pattern
arbitrarily via design parameters. A common issue to all
grating types is that the extraction efficiency and the direc-
tional control depend on the relative emitter-grating position:
a quantum light source contained in a horizontal plane below
the grating displays a different behavior whether it is located
adjacent to a crest or to a trough.22 As a consequence, the out-
coupling performance of the grating is not univocally deter-
mined, but results from an average over the spatial distri-
bution of the emitters.

In this paper, we propose a novel paradigm based on dis-
persion engineering to outcouple large-k waves from HMMs.
With a suitable selection of the HMM filling ratio, we extract
high k-vectors into the far field by compressing their com-
ponent parallel or perpendicular to the HMM optical axis,
thereby enhancing the overall power routed along the corres-
ponding Cartesian direction (see Fig. 1). This method was pre-
viously suggested by West et al.40 for the case of a ML HMM of
Type II; the present work extends the tractation, to include
both Type I and Type II dispersion and both ML and NW geo-
metries. By lifting the requirement for a grating, our approach
makes the fabrication of fast optical transmitters based on
quantum emitter–HMM coupling more practical and versatile.
The extraction mechanism relies on the bulk properties of the
HMM, rather than on spatially varying features of a superi-
mposed structure: as such, it affects equally all the emitters
contained in the same plane parallel or orthogonal to the
optical axis. This enables the effective channeling of emission

from a QW, which for practical purposes can be thought of as
a plane of quantum sources (electron–hole pairs). We first
discuss the theory of dispersion-assisted directional out-
coupling in the ideal case of zero optical losses, analyzing the
four HMM configurations that induce this phenomenon. We
then assess two metal/dielectric material systems for ML
HMMs in the visible range, and observe how their loss
restricts the practically achievable configurations and the
band of outcoupled k-vectors. The developed model is finally
applied to the study of a colloidal QD–HMM system: by
means of finite element electromagnetic simulations, we
determine how the light emitted from a point dipole (repre-
senting the QD) into a block of HMM is outcoupled by the
latter into directional far-field radiation, polarized along the
optical axis independently of the dipole orientation. After
evaluating the performance of the QD–HMM system, we con-
clude our study by suggesting guidelines for its practical
implementation and future development.

2 Results and discussion
2.1 Principle of large-k waves outcoupling via dispersion
engineering

In the following we explain how large-k waves can be direction-
ally extracted from lossless HMMs via a filling ratio optimiz-
ation procedure. The results presented hold true for any
medium with hyperbolic dispersion regardless of how its
effective parameters are retrieved, and therefore indistinctly
apply to ML and to NW configurations. Since ML HMMs offer
a wider constituent materials choice and are more versatile
from a fabrication standpoint, we will focus on this category in
the subsequent analysis.

Fig. 1 Artistic representation of high-speed optical transmission via
unpatterned HMMs. Light emitted from a multiple quantum well,
depicted by 3 green (left) and red (right) luminescent layers, couples to a
ML (left) and a NW (right) HMM block. The hyperbolic dispersions are
designed to extract radiation respectively from the side or from the top
interface.
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A hyperbolic medium is described by a uniaxial permittivity
tensor of the form:6

ε ¼
ε? 0 0
0 ε? 0
0 0 εzz

2
4

3
5; ð1Þ

in a Cartesian frame of reference {x̂,ŷ,ẑ} where the unit vector ẑ
is parallel to the optical axis. For a periodic ML HMM with
layer interfaces orthogonal to ẑ, the effective parameters ε⊥
and εzz are obtained through the homogenization formulae:6

ε?ðω; ρÞ ¼ ρεmðωÞ þ ð1� ρÞεdðωÞ; ð2Þ

εzzðω; ρÞ ¼ ρ

εmðωÞ þ
1� ρ

εdðωÞ
� ��1

: ð3Þ

εm(ω) and εd(ω) are respectively the permittivities of the met-
allic and the dielectric layers, which in the absence of spatial
dispersion and optical loss depend solely on the angular fre-
quency ω and are real quantities, and 0 < ρ < 1 is the volu-
metric filling ratio of metal. The dispersion of the effective
medium is hyperbolic only at those frequencies and at those
filling ratios at which ε⊥εzz < 0. This requirement classifies the
behavior of HMMs into two distinct types:

Type I. When ε⊥(ω,ρ) > 0 and εzz(ω,ρ) < 0;
Type II. When ε⊥(ω,ρ) < 0 and εzz(ω,ρ) > 0.
Let us consider the interface, contained in the xy plane of

the real space, between a nonmagnetic HMM in the z < 0
region and a lossless isotropic dielectric medium in the z > 0
region. A plane wave with wavevector kHMM of arbitrary magni-

tude is subject inside the hyperbolic medium to the
dispersion:

kHMM;?
k0

� �2 1
εzz

þ kHMM;z

k0

� �2 1
ε?

¼ 1; ð4Þ

where, by virtue of the cylindrical symmetry of the permittivity,
we introduced the cylindrical coordinate
kHMM;? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kHMM;x
2 þ kHMM;y

2
p

, and k0 = ω/c (c = speed of light
in vacuum). In the dielectric medium, dispersion takes instead
the form

kdiel;?
k0

� �2

þ kdiel;z
k0

� �2

¼ n2; ð5Þ

where kdiel;? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kdiel;x2 þ kdiel;y2

p
and n is the refractive index,

and the magnitude of the wavevector kdiel is equal to k0n.
Eqn (4) and (5) define respectively a hyperboloid and a sphere
in the space of k-vectors at a given frequency ω̄. Their cross-
section in the kxkz plane is represented in Fig. 2(a) for the case
of a Type II HMM and air. To simplify the notation and make
the discussion clearer, we restrict the following analysis to the
(kx > 0, kz > 0) quadrant; analogous considerations can be
extended by symmetry to the remaining 3 quadrants. We
define “large-k waves” those plane waves with k-vector |kHMM|
> |kair|, and “short-k waves” those with k-vector |kHMM| ≤ |kair|.
The HMM supports the propagation of large-k waves of com-
ponents kHMM,x > k0nair = k0 and kHMM;z >�< k0. When such waves
reach the HMM–air boundary, the conservation of the k-vector
component parallel to the interface mandates that kair,x =
kHMM,x. Since kHMM,x > k0, kair;z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 � kHMM;x

2
p

is a purely

Fig. 2 Iso-frequency curve of Type II HMM (blue hyperbola) showing large k-vector outcoupling upwards into air (red circle) via (a) grating and (b)
dispersion engineering. The two configurations are schematically represented above the plots (Λ = grating pitch). For clarity, only the right branch of
the HMM iso-frequency curve is shown, and the normalization by k0 is omitted in the vector nomenclature. In (b), the portion of outcoupled
k-vector band falling within the (kx > 0, kz > 0) quadrant is highlighted in light blue (short-k waves) and pink (large-k waves).
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imaginary number. This turns a propagating wave in the HMM
into an evanescent wave in air, preventing its successful out-
coupling into the far-field.

Impedance mismatch is traditionally bridged by patterning
a grating onto the HMM (inset of Fig. 2(a)). A 1D grating with
pitch Λ and periodicity along x̂ provides an extra k-vector kΛ =
kΛx̂ = (2π/Λ)x̂,41 outcoupling into air the band of k-vectors with
components kHMM,x > k0 such that kHMM,x = kΛ + kair,x is veri-
fied for some real kair,x ≤ k0. At that point indeed the plane
wave becomes propagating in air, as eqn (5) forces its com-
ponent kair,z to be a real quantity ≤k0.

The same goal can be achieved with the alternative
approach schematized in Fig. 2(b). If the filling ratio ρ of the
HMM is properly designed, the hyperbolic iso-frequency curve
gets “straightened” along the z direction and “squeezed” along
the x direction within the circular iso-frequency curve of air. In
this case, there exists in the HMM a band of k-vectors which
possess a conserved component kHMM,x ≤ k0, and therefore
retain their propagating nature across the HMM–air boundary.
The band is delimited by two extremes kHMM,1 and kHMM,2,
and contains both short- and large-k waves, separated by a
vector kHMM,sep (not drawn in the figure). kHMM,1, kHMM,sep and
kHMM,2 are defined as the intersections of the hyperbolic iso-
frequency curve respectively with the x axis, the circular iso-fre-
quency curve of air and the straight line kx ≡ k0. The relative
contribution of large-k waves, (kHMM,2x − kHMM,sep x)/(kHMM,2x −
kHMM,1x), increases as the hyperbolic iso-frequency curve gets
more squeezed; the z-bandwidth kHMM,2z − kHMM,sep z and the
z-density dkHMM z/dkHMM x of large-k waves increase as the
hyperbolic iso-frequency curve gets straighter. Refraction into
air occurs within an angular range θ1 ≤ θ ≤ θ2, where θ is the
angle between the refracted k-vector and the optical axis z,
θ 1 ¼ arctanðkHMM;1x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 � kHMM;1x

2
p Þ and θ2 = 90°. The limit

case of infinite z-bandwidth and refraction normal to the inter-
face (θ1 = θ2 = 0°) is reached when the hyperbola branches
become straight lines and collapse onto the optical axis, as
mathematically detailed in Appendix A. Although such situ-
ation appears ideal for applications, before drawing con-
clusions we must include energy propagation in our analysis.
We recall that the power flux within a medium is perpendicu-
lar to the isofrequency surfaces.6 When the two branches of
the hyperbola become parallel to the z axis, namely the curva-
ture at vertices becomes minimal, energy within the HMM
flows parallel to the HMM–air interface and never reaches it,
making outcoupling impossible. Therefore a tradeoff is
required: the curvature of the hyperbola at vertices must be
small enough to allow a sufficient z-bandwidth, but large
enough to avoid that energy travels too long within the HMM –

with the risk of being dissipated by loss – before touching the
boundary with air.

2.2 Design guidelines and outcoupling configurations

We now derive comprehensive guidelines to optimize large-k
wave extraction from a Type II HMM into air through a flat
interface contained in the xy plane (top outcoupling). Our con-
siderations are again restricted for simplicity to a cross-section

of the iso-frequency curve in the (kx > 0, kz > 0) quadrant. As
concluded in the previous subsection, the target dispersion
will be the one that enables infinite bandwidth and normal
emission; once the optimum εzz and ε⊥ are obtained, we will
have to arbitrarily (the tradeoff depends on the application)
relax the infinite bandwidth condition to achieve successful
outcoupling.

The target iso-frequency curve corresponds to a limit hyper-
bolic curve with maximal straightening and maximal squeez-
ing; these simultaneous requests are formalized in system (13)
of Appendix A. When optimization is performed at a given
emission frequency ω̄, we have two equations, involving two
functions ε⊥(ω̄,ρ) and εzz(ω̄,ρ), and only one variable ρ. The
resulting overdetermined system admits a solution ρ̄ such that
εzz(ρ) → 0+ as ρ → ρ̄, provided that |ε⊥(ρ)| approaches a finite
value or approaches 0 less quickly than εzz(ρ) does. Therefore,
we optimize dispersion as follows: we choose ρ̄ such that εzz(ρ̄)
∼ 0+ (but not exactly εzz(ρ̄) = 0, to avoid the energy propagation
issue discussed above), making sure that the related condition
on ε⊥(ρ̄) is verified. Fig. 3(c) shows an iso-frequency curve
where εzz does not take the limit value 0, but is small enough
to possess a band of outcoupled k-vectors, highlighted in light
blue (short-k waves) and pink (large-k waves).

Large wavevectors can also be extracted when the HMM–air
interface lies in the yz plane (side outcoupling). In this case,
one equation suffices to request both maximal straightening
and maximal squeezing (Appendix A). Its solution ρ̄ satisfies
|ε⊥(ρ)| → 0+ as ρ → ρ̄, provided that εzz(ρ) approaches a finite
value or approaches 0 less quickly than |ε⊥(ρ)| does. In
analogy to the previous reasoning, we do not select ρ̄ such that
|ε⊥(ρ̄)| = 0, but rather |ε⊥(ρ̄)| ∼ 0+; a situation where ε⊥ is small
enough to possess an outcoupled band, but not yet approach-
ing the limit value 0, is represented in Fig. 3(d). While in the
case of top extraction the outcoupled band always contains
both short- and large-k waves, in the case of side extraction
only the latter are present if the condition εzz(ρ̄) > 1 is verified
(like in Fig. 3(d)).

Type I dispersion is mathematically a 90° rotation of the
Type II one (Appendix A). With arguments and caveats similar
to those hitherto discussed, top outcoupling is achieved at ρ̄
such that |εzz(ρ)| ∼ 0+ (an iso-frequency curve with small εzz is
shown in Fig. 3(a)), while side outcoupling requires ε⊥(ρ) ∼ 0+

(an iso-frequency curve with small ε⊥ is shown in Fig. 3(b)).
Both short- and large-k waves are always present in a side-out-
coupled band, while a top-outcoupled one features exclusively
large-k components if the condition ε⊥(ρ̄) > 0 is verified
(Fig. 3(a)).

The design guidelines traced in the present subsection,
which relate large-k extraction to the epsilon-near-zero (ENZ)
behavior of the effective permittivity components, are summar-
ized in Table 1.

2.3 Influence of loss on dispersion

Thus far we have assumed that the constituent materials of
the ML or the NW are lossless. This implies that their permit-
tivities εm and εd, and therefore the effective permittivity com-
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ponents ε⊥, εzz, are real quantities. Loss in actual materials,
mathematically represented by a nonzero imaginary part of
permittivity, distorts the iso-frequency curve. In eqn (4), the
k-vector component conserved at the HMM-dielectric interface
is the independent variable and takes only real values. Since
now ε⊥ and εzz are complex quantities, the k-vector component
orthogonal to the interface becomes complex, and it is its real
part that appears in the iso-frequency curve.

Effective permittivities with a small imaginary part do not
alter excessively the iso-frequency curve, compared with the
lossless case. Our analysis showed that top outcoupling is

achieved for Re{εzz}-near-zero (Re{εzz} ∼ 0− for Type I, Re{εzz} ∼
0+ for Type II), and side outcoupling for Re{ε⊥}-near-zero
(Re{ε⊥} ∼ 0+ for Type I, Re{ε⊥} ∼ 0− for Type II). We subsequently
investigate whether any coupling behavior is associated with a
resonance, and therefore incurs a penalty for large losses (a
large imaginary permittivity).

In ML HMMs, eqn (2) prescribes that Re{ε⊥} as a function
of ω have a zero induced by the zero of Re{εm}; Re{εzz}, accord-
ing to eqn (3), can have a zero as well, but also crosses zero in
correspondence of a resonant pole.42 The zero of Re{ε⊥} and
the pole of Re{εzz} can be continuously tuned with ρ: and since
Im{ε⊥} may be low, but Im{εzz} is always large, we conclude
that for ML HMMs side outcoupling is more viable than top
outcoupling. The situation is reversed for NW HMMs: in that
geometry, the direction of free electron motion (parallel to the
wires) is orthogonal to the one in MLs (parallel to the layers),
so the role of the ε⊥ and εzz components is exchanged. NW
HMMs are therefore a better choice for top outcoupling, and a
poor one for side outcoupling.

We now consider a hyperbolic medium with effective para-
meters ε⊥, εzz calculated for a ML geometry, and optimize the
side extraction of large-k waves at the wavelengths λ1 = 530 nm

Fig. 3 Cases of dispersion-assisted directional outcoupling from HMMs (blue hyperbola) into air (red circle). The effective parameters of the hyper-
bolic iso-frequency curves are: (a) ε⊥ = 3, εzz = −0.5; (b) ε⊥ = 0.3, εzz = −3; (c) ε⊥ = −5, εzz = 0.3; (d) ε⊥ = −1, εzz = 3. The band of outcoupled
k-vectors is highlighted in light blue (short-k waves, only present in (b) and (c)) and in pink (large-k waves).

Table 1 Design guidelines for dispersion-assisted outcoupling in
HMMs. The notation f (x) = o(g(x)) as x → x̄, read “f is little-o of g as x
approaches x̄,” means that lim

x!�x
fðxÞ=gðxÞ ¼ 0

HMM Type Outcoupling
Guideline

(pick ρ such that.)
Caveat

(verify that.)

Type I
Top |εzz(ρ)| ∼ 0+ |εzz(ρ)| = o(ε⊥(ρ))
Side ε⊥(ρ) ∼ 0+ ε⊥(ρ) = o(|εzz(ρ)|)

Type II
Top εzz(ρ) ∼ 0+ εzz(ρ) = o(|ε⊥(ρ)|)
Side |ε⊥(ρ)| ∼ 0+ |ε⊥(ρ)| = o(εzz(ρ))
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and λ2 = 470 nm relevant for optical communication. We
achieve this goal by determining for a selected material system
(Ag/Si for λ1, Ag/SiO2 for λ2) the filling ratio that maximizes the
bandwidth of outcoupled k-vectors. The SiO2 permittivity is
assumed to be 2.25, while the Ag and the Si permittivities are
taken respectively from (ref. 43 and 44). At λ1, a Ag/Si effective
medium displays a Type I behavior with Re{ε⊥} ∼ 0+ at ρ = 0.58
(the exact Re{ε⊥} → 0+ condition is achieved at decimal digits
of ρ that are meaningless from a fabrication standpoint)
(Fig. 11(a and c) of Appendix C). The material permittivities
εAg = −11.66 − 0.36i and εSi = 17.23 − 0.44i result in effective
parameters ε⊥ = 0.5 − 0.4i and εzz = −39.03 − 3.34i. Restricting
our considerations to the (kx > 0, kz > 0) quadrant, we obtain a
band including both short-k (0 < kz/k0 ≤ 0.53, 0 < |Re{kx/k0}| ≤
0.84) and large-k waves (0.53 < kz/k0 ≤ 1, 0.84 < |Re{kx/k0}| ≤
4.72). The total outcoupled band, including the remaining 3
quadrants, is showed in Fig. 4(a). At λ2 instead, a Ag/SiO2

effective medium achieves a Type II regime with Re{ε⊥} ∼ 0− at
ρ = 0.22 (Fig. 11(b and d) of Appendix C). The material permit-
tivities εAg = −8.15 − 0.28i and εSiO2

= 2.25 generate effective
parameters ε⊥ = −0.04 − 0.06i and εzz = 3.13–0.01i. Again
restricting our considerations to the (kx > 0, kz > 0) quadrant,
we obtain a band entirely composed of large-k waves (0 < kz/k0
≤ 1, 1.77 < |Re{kx/k0}| ≤ 5.98). The total outcoupled band,
including the remaining 3 quadrants, is showed in Fig. 4(b).
Compared to the ideal behavior of lossless HMMs for side out-
coupling (Fig. 3(b and d)), the Ag/SiO2 iso-frequency curve
does not present major alterations, whereas the Ag/Si iso-fre-
quency curve exhibits distortion for values of Re{kx/k0} close to

0. While Im{ε⊥} and Im{εzz} for the Ag/SiO2 system are low
enough to preserve the hyperbolicity of the iso-frequency
curve, the correspondent parameters for the Ag/Si system,
respectively one and two orders of magnitude larger, alter the
iso-frequency curve by conferring it a hybrid hyperbolic-ellipti-
cal character.

2.4 Influence of finite periodicity on dispersion

Effective medium theory (EMT), leading to eqn (2) and (3),
assumes that the length of the ML period is much smaller
than the effective wavelength of light within the medium. As
the momentum kx increases, the effective wavelength λeff =
2π/kx decreases. The accuracy of EMT is thus circumscribed to
a finite range of supported large-k waves. Bloch’s theorem,45,46

unlike EMT, explicitly incorporates the thickness of the ML
components, and lets us estimate the maximum of the large-k
range as max[Re{kx/k0}] = λ0/(2L). In this formula, λ0/(2L) is the
normalized Brillouin zone boundary, L is the period length
and λ0 vacuum wavelength. If, for instance, a practically achiev-
able period length L = 20 nm is assumed for both the Ag/Si
and the Ag/SiO2 MLs, the first supports a maximum Re{kx/k0} =
13.25 at the vacuum wavelength λ1, while the second supports
a maximum Re{kx/k0} = 11.75 at the vacuum wavelength λ2.
The upper extremes of the respective outcoupled bands, deter-
mined in subsection 3, fall below these maxima: therefore, our
results based on the effective medium are consistent for real
structures with the above-mentioned period length.

To further assess the accuracy of EMT in a quantitative
fashion, we compute by means of Bloch’s theorem the isofre-

Fig. 4 Iso-frequency curves of Type I and Type II effective media (blue curve) for lateral outcoupling into air (red curve), taking into account the
actual loss of the constituent materials: (a) Ag/Si effective medium at λ1 = 530 nm and filling ratio ρ = 0.58 (Type I), (b) Ag/SiO2 effective medium at
λ2 = 470 nm and filling ratio ρ = 0.22 (Type II). The band of outcoupled k-vectors is highlighted in light blue (short-k waves, only present in (a)) and in
pink (large-k waves).
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quency surfaces of the Ag/Si and the Ag/SiO2 systems. To sim-
plify the notation we restrict our considerations to the kxkz
plane. Assuming a ML of infinite lateral and vertical extent,
finite periodicity L, and with layers orthogonal to the z axis,
the dispersion for TM waves is governed by47

kB;z ¼ L�1 cos�1 Aþ D
2

� �
; ð6Þ

where

A;D ¼ expð+ikm;zdmÞ

cosðkd;zddÞ+ i
1
2

εdkm;z

εmkd;z
þ εmkd;z
εdkm;z

� �
sinðkd;zddÞ

� �
:

ð7Þ

Eqn (6) expresses the effective kz component for the entire
ML, kB,z, as a function of the conserved component kx, treated
as an independent variable and implicitly contained in
eqn (7): here, the + and − signs correspond respectively to A
and D, dm (dd) is the thickness of the metallic (dielectric)
layers, and km;z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εmk02 � kx2

p
kd;z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εdk02 � kx2

p� �
is the z

component of the wavevector in the metallic (dielectric) layers.
Fig. 5(a) shows the Bloch iso-frequency curve of TM-polar-

ized waves in a periodic Ag/Si system at λ1, with L = 20 nm and
ρ = 0.58 (corresponding to dAg = 11.6 nm and dSi = 8.4 nm),
and compares it with the EMT iso-frequency curve of Fig. 4(a).
The maximum outcoupled component Re{kx/k0} = 2.93 is 38%
lower than the corresponding value obtained with EMT. An
analogous comparison is shown in Fig. 5(b) for a periodic Ag/
SiO2 system at λ2, with L = 20 nm and ρ = 0.22 (corresponding
to dAg = 4.4 nm and dSiO2

= 15.6 nm). The maximum out-
coupled component Re{kx/k0} = 4.66 is 22% lower than the
corresponding value obtained with EMT. This analysis shows
that, although reduced, the outcoupled bandwidth remains

significant when accounting for finite periodicity. Therefore,
the general method we propose retains its validity beyond
EMT.

2.5 Quantum dot–HMM coupling

We apply the results of subsection 2.3 to an elemental light-
emitting system, composed of a quantum dot and a block of
HMM in air. The system is designed to operate at λ1 = 530 nm,
and to be implemented in a ML geometry: the effective para-
meters ε⊥, εzz are thus obtained from a Ag/Si ML HMM with
ρ = 0.58, and enable large-k extraction from the lateral faces of
the block. By means of full wave 2D COMSOL simulations, we
study a HMM block infinitely extended along the y direction,
and with rectangular cross-section lxlz. The height lz = 200 nm
corresponds to a ML of 10 periods of length L = 20 nm; a well-
controlled structure of this kind has been grown via sputtering
by our group in the past.22 The width lx = 3 μm is easily achiev-
able with standard photolithographic techniques. We model
the QD with a point dipole emitting at λ1, located 5 nm below
the bottom surface and 150 nm left of the right face of the
HMM block (Fig. 6). Such asymmetric positioning allows a
simultaneous evaluation of the extraction efficiency from the
HMM lateral faces when the emitter-face distance is either
within (150 nm) or outside of (2850 nm) the near-field.

The large-k waves contained in the spectrum of the dipole
are coupled into the HMM block, through which they travel
until they reach the lateral boundary with air. To quantify how
dispersion inhibits or favors their extraction into the far-field,
we compare the performance of an unoptimized filling ratio,
ρA = 0.54, with that of the optimized one, ρB = 0.58. The
respective isofrequency contours in the kxkz are shown in
Fig. 12 of Appendix C. At ρA, the HMM exhibits Type I behav-
ior, and only an extremely narrow band of dispersion-out-
coupled large-k waves is supported; as ρ is increased, the
HMM still retains Type I nature, but the bandwidth of the
extracted large-k waves grows, assuming its largest value at ρB
(cfr. subsection 2.3). The effectiveness of outcoupling through
the lateral faces is determined by the amount of power emitted
into a circular arc coaxial with x̂, with vertex in the center of
the face and aperture θ = 30° Fig. 6 illustrates the different
response of the two filling ratios to a dipole oriented along x̂
(“X-dipole”) and to one oriented along ẑ (“Z-dipole”). For an
X-dipole, the power outcoupled through the right face of the
HMM block at ρB results in 7 times larger than that outcoupled
at ρA, while for a Z-dipole the power extracted at ρB exceeds by
39 times that extracted at ρA. The dipole–HMM interaction is
stronger for a Z-dipole, which outcouples at ρB almost twice as
much power as an X-dipole. Due to the material loss of the
hyperbolic medium, large-k extraction efficiency decreases as
the emitter-face distance is increased: the power outcoupled at
ρB through the left face is 3 orders of magnitude lower than
that outcoupled through the right one, both for an X- and for a
Z-dipole. We notice that at ρA some radiation, guided by the
HMM–air interface, reaches the left side of the HMM and gets
scattered by the edges; but power propagation through the

Fig. 5 Influence of finite periodicity on outcoupling. Black curve: Bloch
iso-frequency curve; blue curve: EMT iso-frequency curve; red curve:
iso-frequency curve of air. (a) Ag/Si ML with period L = 20 nm and filling
ratio ρ = 0.58 at λ1 = 530 nm. (b) Ag/SiO2 ML with period L = 20 nm and
filling ratio ρ = 0.22 at λ2 = 470 nm.
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bulk of the HMM, which is what our outcoupling mechanism
leverages, is again prevented by loss.

The radiation extracted into the far-field through the right
face is polarized parallel to the optical axis ẑ, regardless of the
dipole orientation (Fig. 7). Such behavior has been experi-
mentally observed in a luminescent hyperbolic metasurface,
composed of alternating Ag layers and InGaAsP multiple QWs
(MQWs), where both parallel- and perpendicular-polarized

pumping of the MQWs with respect to the optical axis result in
parallel-polarized emission.48 It is attributed to the fact that
only modes with an electric field component parallel to the
optical axis are allowed to propagate in a hyperbolic
medium.49

The potential of dispersion-assisted outcoupling becomes
apparent if we artificially reduce the imaginary parts Im{ε⊥}
and Im{εzz}, representing loss, to 1% of their original value

Fig. 6 Spatial power distribution (magnitude of the Poynting vector) at λ1 = 530 nm of a dipole 5 nm below a block of Ag/Si effective medium in air.
The dipole location and orientation are respectively indicated by a pink-bordered white dot and a pink arrow below it. The material loss of the HMM
corresponds to 100% of its original value. (a) X-dipole, filling ratio ρA = 0.54; (b) X-dipole, filling ratio ρB = 0.58; (c) Z-dipole, filling ratio ρA = 0.54;
(d) Z-dipole, filling ratio ρB = 0.58.

Fig. 7 Electric field polarization of the dipole radiation outcoupled through the right face of the HMM block (whose rightmost portion is shown
in grey on the left of the image) at the optimized filling ratio ρB = 0.58. The dipole location and orientation are respectively indicated by a white dot
and a blue arrow below it. Whether the dipole is polarized along x̂ (a) or along ẑ (b), the radiation leaving the HMM face is predominantly polarized
along ẑ.
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(Fig. 8). In this ideal case, power propagates inside the hyper-
bolic medium along the characteristic resonance cones,
reflected off the top and bottom surfaces of the HMM, until it
reaches the left and right boundaries with air. Here, large-k
waves are efficiently extracted only when the filling ratio is
optimized: the power outcoupled through the right face at ρB
is 3 orders of magnitude larger than the one outcoupled at ρA,
both for an X- and for a Z-dipole. The strong imbalance
between the left and the right face is also removed, as for an
X-dipole the power outcoupled at ρB through either boundary
is almost the same, while for a Z-dipole the left face outcouples
at ρB 1.7 times as much power as the right one. Which face
outcouples the largest power depends on its distance from the
dipole. The radiation reaching one face is the superposition of
the waves directly traveling to said face and those reflected off
the other, whose propagation is not any longer suppressed by
loss. For certain dipole locations, the contribution of inter-
ference selects the face farther from the dipole as the main
outcoupling gateway. Radiation polarized along the optical
axis ẑ irrespective of the dipole orientation is emitted into the
far-field through both of the lateral faces.

The simultaneous approximation of a ML HMM with an
effective medium description and of the 3D space with a 2D
environment enables the study of extended structures (size ≥

few μm) with an accurate mesh (mesh element size of the
order of 1 nm) and in a reasonable computational time (not
exceeding few hours). To test the predictions of our outcou-
pling method in the absence of approximations, in Appendix B
we perform a 3D analysis of the coupling between a quantum
dot (point dipole) and a block of HMM of reduced size (base
300 nm × 300 nm, height 200 nm). The Si/Ag ML HMM is first
modeled as an effective medium, and then as a periodically
layered structure. The results obtained are consistent with the
general findings described here.

2.6. Discussion

With the due distinctions in terms of light coherence, a system
formed by a suitably designed HMM block coupled to solid-
state quantum emitters (QWs, QDs) can become the equivalent
of an edge-emitting laser or a vertical-cavity surface-emitting
laser (VCSEL), based on spontaneous rather than stimulated
emission. “Hyperbolically-enhanced” LEDs with a modulation
speed comparable to that of lasers could replace the latter in
very-short-haul optical interconnects (on-chip or chip-to-chip
communications), where their limitations related to pulse
broadening and dispersion do not outweigh their advantages
in energy budget, thermal management, reliability and manu-
facturing cost.27

Fig. 8 Spatial power distribution (magnitude of the Poynting vector) at λ1 = 530 nm of a dipole 5 nm below a block of Ag/Si effective medium in air.
The dipole location and orientation are respectively indicated by a pink-bordered white dot and a pink arrow below it. The material loss of the HMM
has been reduced to 1% of its original value. (a) X-dipole, filling ratio ρA = 0.54; (b) X-dipole, filling ratio ρB = 0.58; (c) Z-dipole, filling ratio ρA = 0.54;
(d) Z-dipole, filling ratio ρB = 0.58.
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Our analysis showed that ML HMMs naturally support side
emission, but are not suited for top emission. In addition, as
observed in the previous subsection, the intrinsic loss of con-
stituent materials restricts efficient outcoupling to those emit-
ters in the near field of the side interface. These two con-
straints can be relaxed simultaneously by fabricating the ML
into vertical lamellae, where the non-metallic constituent is a
gain medium such as a semiconductor MQW. A configuration
of this kind was recently demonstrated with a Ag/InGaAsP
system.48,50–53 Operating in the 1200 nm–1600 nm spectral
range, the structure exhibits narrow bands of large-k waves
that outcouple to air without the need for a grating, for the
reasons theoretically explained in the present work. Another
design that meets the top emission and efficient outcoupling
requirements exploits a hyperlens-like geometry: the layers
here are arranged in a concentric semi-spherical or semi-
cylindrical stack, contained in the z < 0 region and comprised
between the external and internal radii rext and rint, and the
surface of the innermost layer is coated with QDs. Provided
that rext is within the near field of the emitters, radiation from
the QDs couples to the HMM, shortly travels along the direc-
tion tangential to the layers without experiencing excessive
attenuation and gets extracted along the z axis. An alternative
approach to achieve top emission consists in growing the ML
on the side walls of a vertical nanowire light-emitting structure
that incorporates one or more MQWs; the geometry of the
nanowires and of the MQWs can be adjusted, as shown in (ref.
54) for blue/green-emitting III-nitride semiconductor nano-
wires, to boost the emitter–ML interaction and optimize the
outcoupling efficiency. Top emission is convenient from a
manufacturing standpoint: while edge-emitting devices grown
on a wafer must be first diced in sub-units and then tested
individually, surface-emitting ones can be tested all at once on
the wafer where they are fabricated. Side emission however is
desirable for on-chip or chip-to-chip communication, and
enables direct light coupling into waveguide-like planar
devices. In order to maintain a HMM feature size compatible
with photolithography, without limiting efficient outcoupling
to the emitters closer to the side faces, the imaginary com-
ponent of the constituent permittivities can be minimized
with low-loss materials55,56 or compensated for with gain. van
der Waals heterostructures, built with single-atomic layer
materials (“2D crystals”) including graphene, hexagonal boron
nitride (hBN) and 2D oxides,57 can incorporate atomic mono-
layers of transition metal dichalcogenides such as tungsten
diselenide (WSe2) and tungsten disulfide (WS2) as active
media.58,59 Heterostructures based on hBN, a natural HMM,60

or on ultra-thin MLs with 2D active layers, can greatly reduce
loss and fully leverage our light extraction method, since their
size forbids grating inscription as a practical option. Finally,
hybrid ML-NW geometries, or MLs with atomically thin met-
allic films subject to quantum confinement, might elude with
their dispersion the guidelines traced in subsection 2.2.

The feasibility of our approach relies on the exact control of
the filling ratio. In the visible range, the ML period must not
exceed few tens of nanometers in order to be sub-wavelength

(and therefore justify the effective medium approximation).
Metallic films for operations at visible wavelengths are typically
grown by DC sputtering or e-beam evaporation. In either case,
at thicknesses of 10 nm or less, the metal forms islands,
rather than a uniform layer. While the size and shape of the
grains can be controlled to some extent by tuning the depo-
sition parameters, the resulting morphology intrinsically
yields a space-dependent filling ratio. Therefore, the effective
HMM parameters need to have a good tolerance with ρ vari-
ations, to preserve the applicability of our model. This rep-
resents less of a concern for HMMs in the infrared (IR) range:
NW and ML systems can be grown with sub-nanometer accu-
racy via atomic layer deposition (ALD) and chemical vapor
deposition (CVD),56,61 and periods of several tens of nm are
already well sub-wavelength. IR HMMs hence constitute a
promising candidate for early experimental testing. A dynamic
fine-tuning of the filling ratio from non-outcoupling to out-
coupling, detectable as an enhanced directionality of the emission
pattern, can be performed in voltage-controlled HMMs.60,62,63

An emitter–HMM system suitable for optical communi-
cation should simultaneously maximize, at a given wavelength,
the far-field power extracted into a preferential direction and
the PF, which determines the modulation bandwidth enhance-
ment. However, the filling ratios that optimize both quantities
in general do not coincide. A recent work suggests tapering a
hyperbolic ML block to adiabatically outcouple large-k waves
from its side.40 According to that approach, we could design a
HMM with filling ratio varying from ρ1 (in the proximity of the
emitter) to ρ2 (away from the emitter), to first maximize the PF
and then the outcoupling. Such transition however must
happen over a space scale of few microns, which imposes a
constraint on the device size. In addition, power extraction is
limited to the tapering direction, making the mechanism
inefficient. Finally, the shadowed deposition technique uti-
lized seems impractical in an industrial context. We propose
instead to keep a single-ρ design, that achieves a balanced per-
formance between outcoupling and PF. Optimization methods
can be developed to tune this trade-off, which we believe is the
most viable solution in a mass production perspective.

3 Conclusions

The present work introduced a systematic approach to extract
large-k waves from HMMs without the use of a grating. This
novel method relies on dispersion engineering, and is appli-
cable to any medium, natural or artificial, described by a
hyperbolic permittivity tensor. Extraction of a large-k wave
band from the top or from the side faces of the HMM is
achieved, as summarized in Table 1, in the ENZ regime of
either permittivity component. Loss in the effective medium,
dictated both by the loss and the ML or NW arrangement of its
constituent materials, selects the preferential outcoupling con-
figuration: side outcoupling for ML HMMs, top outcoupling
for NW HMMs. We provided guidelines to maximize the extent
of the large-k wave band extracted through the top or side
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faces, and we applied them to the optimization of a Ag/Si and
a Ag/SiO2 ML HMM, respectively at λ1 = 530 nm and λ2 =
470 nm. We further discussed how the effective medium
description moderately overestimates the outcoupled band-
width, when the finite periodicity of practical HMM realiz-
ations is taken into account. We finally studied a QD-Ag/Si ML
HMM system at λ1, modeling the hyperbolic medium both as
an effective medium and as a multilayered structure. For a 3D
block of Ag/Si layered medium, we observed a 6-fold increase
in lateral power extraction at an optimized filling ratio com-
pared to an unoptimized one.

Future work will explore different material combinations
for ML HMMs, with the goal of optimizing lateral extraction at
standard IR wavelengths for fiber-optic communication. In
parallel, NW HMMs will be studied in view of designing an
emitter–HMM system for top outcoupling.

Appendix
A. Limit cases of hyperbolic dispersion

A hyperbola in the xz plane with center in the origin and ver-
tices on the x axis is described by the equation

x2

a2
� z2

b2
¼ 1; ð8Þ

where a (semi-major axis) is the distance between a vertex and
the origin, and b (semi-minor axis) is the distance between a
vertex and the asymptote above (or below) it. While a alone
determines the separation of the hyperbola branches from the
z axis, by defining the coordinates of the vertices (x, z) = (±a, 0),
the ratio of b to a controls the curvature of the branches at the
vertices. The latter is expressed in terms of the eccentricity

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b

a

� �2
s

; ð9Þ

a positive quantity with limiting values of 1 to +∞. These
extreme values are reached by

lim
b
a!0þ

e ¼ 1; lim
b
a!þ1

e ¼ þ1; ð10; 11Þ

corresponding to cases of maximal and minimal curvature,
respectively.

Let us consider a lossless HMM of Type II (εzz > 0 and ε⊥ <
0). Its dispersion is described by eqn (8), provided that the fol-
lowing substitutions are made:

x ! kx=k0 a2 ! εzz
z ! kz=k0 b2 ! jε?j; ð12Þ

For top outcoupling, kx is conserved, and large kHMM,z com-
ponents can be extracted (Fig. 3(c) of main text). Following the
main text, we restrict our analysis to the (kx > 0, kz > 0) quad-
rant. The limit case in which an infinite band of waves propa-
gating within the HMM is converted to propagating waves in
air occurs when two conditions are simultaneously verified:
the branches of the hyperbola must be “straightened” until

their curvature at the vertices vanishes and they align with the
z axis, and “squeezed” along the x axis, until the vertex coordi-
nate a becomes <1. The first requirement ensures the infinite
extension of the band, the second forces all the kx components
of the band to be identical to a certain k̄x < k0. This, by virtue
of eqn (5), preserves the propagating nature of all the k-vectors
in the band across the HMM–air interface. It also implies a
vanishing angular spread in the emission, as all the waves in
the HMM are refracted into air only at one specific angle with
the z axis, θ̄air ¼ arctan ðk̄x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 � k̄x2

p
Þ. Squeezing is maxi-

mized when k̄x = 0: in that case, the two straight branches col-
lapse onto the z axis, θ̄air = 0 and the emission is orthogonal to
the interface. The band edges kHMM,1 and kHMM,2 and the vector
kHMM,sep separating the short- and large-k constituents of the
band (cfr. main text) have zero x components, and z com-
ponents kHMM,1z = 0, kHMM,2z = +∞ and kHMM,sep z = k0. The sim-
ultaneous requests of infinite bandwidth (i.e. maximal straigh-
tening, or vanishing curvature at vertices) and normal emission
(i.e. maximal squeezing, or vertices coinciding with the origin),
are formulated by means of eqn (9) and (11) as follows:

b
a
! þ1

a ! 0þ

(
ð12Þ
,

ffiffiffiffiffiffiffiffijε?j
εzz

r
! þ1ffiffiffiffiffiffi

εzz
p ! 0þ:

8<
: ð13Þ

We look for physical solutions of the system, namely finite
or vanishing values of |ε⊥| and εzz. The second equation
demands that, at a fixed frequency ω̄, the filling ratio ρ take a
value ρ̄ such that εzz(ρ) → 0+ as ρ → ρ̄. The first equation is sim-
ultaneously satisfied if, as ρ → ρ̄, |ε⊥(ρ)| either approaches a
finite value |ε⊥(ρ̄)| or approaches 0 less quickly than εzz(ρ)
does: in mathematical terms, εzz(ρ) = o(|ε⊥(ρ)|) as ρ → ρ̄.

For side outcoupling, kz is conserved, and large kHMM,x com-
ponents can be extracted (Fig. 3(d) of main text). Restricting
our analysis to the (kx < 0, kz > 0) quadrant, the band edges
kHMM,1 and kHMM,2 and the separation vector kHMM,sep are
redefined as the intersections of the hyperbolic iso-frequency
curve respectively with the x axis, the straight line kz ≡ k0 and
the circular iso-frequency curve of air. In the considered con-
figuration, both maximal straightening and maximal squeez-
ing are accomplished by solely requesting that the curvature at
vertices be infinity: by means of eqn (9) and (10), this reads

b
a
! 0þ ð12Þ

, ffiffiffiffiffiffiffiffijε?j
εzz

r
! 0þ: ð14Þ

Eqn (14) is satisfied when, at a fixed frequency ω̄, the filling
ratio ρ takes a value ρ̄ such that |ε⊥(ρ)| → 0+ and |ε⊥(ρ)| =
o(εzz(ρ)) as ρ → ρ̄ (we discarded the unphysical solution εzz(ρ)
→ +∞, and |ε⊥(ρ)| → |ε⊥(ρ̄)| finite or |ε⊥(ρ)| → +∞ slower than
εzz(ρ)). The latter condition implies that εzz(ρ) either
approaches 0 less quickly than |ε⊥(ρ)| does, or approaches a
finite value εzz(ρ̄). In the first case, kHMM,1, kHMM,sep and
kHMM,2 have zero z components, and x components kHMM,1x =
0, kHMM,sep x = k0 and kHMM,2x = +∞. In the second case, all the
z components remain zero and it is still kHMM,2x = +∞, but
kHMM;1x ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
εzzðρÞ

p
k0 and kHMM, sep x depends on εzz(ρ̄): if εzz(ρ̄)
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≤ 1, kHMM,sep x = k0, while if εzz(ρ̄) > 1 kHMM,sep x and therefore
kHMM,sep do not exist, as the hyperbolic and circular iso-fre-
quency curves do not intersect (outcoupled band exclusively
composed of large-k waves).

Let us now consider a lossless HMM of Type I (εzz < 0 and
ε⊥ > 0). By means of the substitutions

x ! kx=k0 a2 ! �jεzzj
z ! kz=k0 b2 ! �ε?;

ð15Þ

we can rewrite eqn (8) as

� x2

a′2
þ z2

b′2
¼ 1; ð16Þ

where we renamed

jεzzj ! a′2 ε? ! b′2: ð17Þ
Eqn (15)–(17) describe a dispersion of Type I. The change of

signs in the left side of eqn (16) corresponds to a 90° rotation
of the hyperbola, whose vertices now lie on the z axis. Identical
considerations to those just discussed for Type II therefore
apply to Type I, keeping in mind that the behavior of top and
side outcoupling is now swapped by cause of the rotation. For
top outcoupling, an infinite bandwidth of k-vectors is ortho-
gonally extracted through the top HMM–air boundary when, at
fixed ω̄, the filling ratio ρ takes a value ρ̄ such that |εzz(ρ)| → 0+

and |εzz(ρ)| = o(ε⊥(ρ)) as ρ → ρ̄. For side outcoupling, an infi-
nite bandwidth of k-vectors is orthogonally extracted through
the side HMM–air interface, for a given ω̄, at ρ̄ such that ε⊥(ρ)
→ 0+ and ε⊥(ρ) = o(|εzz(ρ)|) as ρ → ρ̄.

B. Quantum dot–HMM coupling: 3D study

In the present appendix we extend the analysis of the QD–
HMM system performed in subsection 2.5 to a full 3D simu-
lation environment. As the dimensionality increases, so do
memory requirements, imposing a concomitant decrease of
the domain size if the computational time is to remain finite.
We therefore consider a block of HMM with identical height to
the 2D structure (lz = 200 nm), but with shortened width
coincident with the length lx = ly = 300 nm. To maximize the
analogy with the 2D case, we locate a point dipole emitting at
λ1 5 nm below the center of the bottom surface, so that its dis-
tance from each lateral surface is 150 nm. The power emitted
through a lateral face is collected into a spherical cap coaxial
with x̂ (for the faces parallel to the yz plane) or ŷ (for the faces
parallel to the xz plane), with vertex in the center of the face
and aperture θ = 30°. Symmetry reduces all the dipole-lateral
face permutations to 3 geometries: X-dipole, power outcoupled
through face yz (PX, yz); X-dipole, power outcoupled through
face xz (PX, xz); and Z-dipole, power outcoupled through any of
the lateral faces (PZ).

We first model the Si/Ag HMM as an effective medium. The
powers PX, yz and PZ at the optimized filling ratio ρB are
respectively 4 and 31 times larger than at the unoptimized
filling ratio ρA, a proportion close to that of the correspondent
2D enhancements (subsection 2.5). The power PX,xz which

lacks of a 2D counterpart, results comparable for the two
filling ratios. The lateral power extraction for a Z-dipole
coupled to an EMT block with filling ratio ρB is visualized in
Fig. 9.

In order to further investigate the dipole–HMM interaction
for practical HMM realizations, we replace the effective
medium with a ML structure. The layered stack contains 10
Ag/Si periods of length L = 20, for a total height lz = 200 nm,
and has a width coincident with the length lx = ly = 300 nm, so
that the block size remains unchanged. In this case, both the
collected powers PX, yz and PX, xz are comparable for ρA and ρB,
whereas PZ is 6 times larger at ρB than at ρA. The quantitative
difference with the effective medium result can be understood
by recalling that EMT overestimates the power coupled from a
dipole into a HMM.64 Lateral extraction, both for the effective
and the layered medium, is best achieved with a Z-dipole,
which compared to an X-dipole exhibits a stronger coupling to
a HMM.24,65 Fig. 10 compares the far-field radiation patterns
of a Z-dipole-ML block system at unoptimized and optimized
filling ratios. At ρB, a dominant horizontal emission is gener-
ated by side outcoupling (upper lobe), accompanied by scatter-

Fig. 9 Spatial power distribution (magnitude of the Poynting vector) in
the cross-sectional plane y = 0 of a Z-dipole 5 nm below a 3D block of
Ag/Si effective medium in air. The dipole, whose location is indicated by
a pink-bordered white dot, emits at λ1 = 530 nm. The effective medium
parameters correspond to the optimized filling ratio ρB = 0.58.

Fig. 10 Far-field emission pattern (electric far-field norm) at λ1 =
530 nm of a Z-dipole 5 nm below a 3D block of Ag/Si layered medium in
air. (a) Filling ratio ρA = 0.54; (b) filling ratio ρB = 0.58. The pink-bordered
white square indicates the position of the dipole-ML block system with
respect to the emission pattern.
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ing from the lower block edges closer to the dipole (lower
lobe). At ρA instead, two lobes symmetrically departing from
the dipole-ML block system indicate that the main light extrac-
tion mechanism is scattering from the upper and lower edges
of the block, rather than outcoupling from the lateral faces.

C. Additional plots for the Ag/Si and Ag/SiO2 systems

Fig. 11 shows the real and imaginary parts of the effective com-
ponents for the Ag/Si and Ag/SiO2 MLs discussed in the main
text. Since the losses associated to the Re{ε⊥}-near-zero region
are low, it is possible to achieve side outcoupling. A Re{εzz}-
near-zero region is also present, but it corresponds to a res-
onant pole of eqn (3): the related high loss prevents effective
top outcoupling.

Fig. 12 compares the effective medium iso-frequency curve
of the Ag/Si ML discussed in the main text at two filling ratios
ρA = 0.54 and ρB = 0.58. In both cases the effective medium
exhibits a Type I behavior, distorted from the ideal case of
Fig. 3(b) by the presence of loss; however, at ρA the portion of
laterally outcoupled large-k waves is negligible, whereas at ρB,
optimized for lateral extraction, the outcoupled large-k band-
width becomes significant.
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