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Super-resolution imaging by metamaterial-based
compressive spatial-to-spectral transformation†

Qian Ma, ‡a Huan Hu,‡a Eric Huangb and Zhaowei Liu*a

We present a new far-field super-resolution imaging approach called compressive spatial to spectral

transformation microscopy (CSSTM). The transformation encodes the high-resolution spatial information

to a spectrum through illuminating sub-diffraction-limited and wavelength-dependent patterns onto an

object. The object is reconstructed from scattering spectrum measurements in the far field. The resolu-

tion of the CSSTM is mainly determined by the materials used to perform the spatial to spectral trans-

formation. As an example, we numerically demonstrate sub-15 nm resolution by using a practically

achievable Ag/SiO2 multilayer hyperbolic metamaterial.

I. Introduction

The achievable spatial resolution of a conventional optical
microscope, also known as the diffraction limit, is about one
half of the wavelength of the light. Currently, there are three
general strategies to beat this limit and achieve super-resolu-
tion in a fluorescence microscope: single fluorophore localiz-
ation1 (e.g. stochastic optical reconstruction microscopy
(STORM),2 photo-activated localization microscopy (PALM)3,4

and point accumulation for imaging in nanoscale topography
(PAINT)5), point spread function engineering (e.g. stimulated
emission depletion (STED)6,7), and structured illumination.8,9

Despite the enormous advances,10 these techniques still use
diffraction-limited optics and inevitably require trade-offs in
other imaging characteristics, such as speed, phototoxicity,
versatility, or the field of view to reach these resolutions. For
instance, localization-based technology typically can achieve
10–20 nm resolution, but requires a relatively long time to
identify a sufficient number of fluorophores from thousands
of camera frames. When both temporal resolution and spatial
resolution are needed, structured illumination microscopy
(SIM) stands out since it only requires a few camera frames to
reconstruct one super-resolution image. The resolution of
linear SIM has been demonstrated as high as 84 nm (ref. 11)
along with a reported frame rate of ∼14 Hz.12 By shrinking the
size of structured patterns, plasmonic structured illumination

microscopy (PSIM)13,14 or localized plasmon assisted struc-
tured illumination microscopy (LPSIM)15 can further bring the
resolution down to a 50 nm scale without reducing the
imaging speed.

In contrast to conventional diffraction-limited optics, the
use of plasmonics and metamaterials introduces the capability
to manipulate light at sub-diffraction scales.16 This is due to
the ability of metamaterials to allow high spatial-frequency
waves that are typically evanescent in air to propagate. Thus,
utilizing plasmonics and metamaterials provides alternative
strategies for super-resolution imaging, which is also not
necessarily limited to fluorescence imaging. First theorized in
the form of Pendry’s perfect lens,17 many hyperlenses18,19 or
metalenses20,21 have since been proposed and demonstrated.
These hyperlenses or metalenses act like a conventional lens,
but possess much higher resolving power. In the case of a
hyperlens,18 a magnified image of a high-resolution object is
formed in the far field. The resolution of a hyperlens, in
theory, can be at the sub-10 nm scale,22 determined by the
highest spatial-frequency wave the material can carry.
However, due to its limited physical size and curved geometry,
it has a limited field of view. Although a transformation optics
based flat-hyperlens has been proposed, it hasn’t been demon-
strated experimentally due to material fabrication chal-
lenges.23,24 Recently, the development of an all-dielectric meta-
material superlens has shown its potential in enlarging the
field of view and lowering the losses.25

Besides lens-based approaches, metamaterials can also
work with computational imaging methods. An example of
this was studied at radio frequency:26 a metamaterial is used
to create wavelength-dependent sampling patterns, and an
object is firstly sampled by these patterns and is then recon-
structed by an algorithm known as compressive sensing.27

Recently, a theoretical study of hyper-structured illumination28
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was reported which brings the idea of structured illumination
and hyperbolic metamaterials (HMMs) at optical frequency
together to allow a planar geometry and in principle an unlim-
ited field of view. Nevertheless, to achieve a 2-dimensional
sub-diffraction-limited image by using a planar HMM for a
practically achievable design remains elusive.

In this letter, we propose a metamaterial-based reconstruc-
tive super-resolution imaging approach, called compressive
spatial to spectral transformation microscopy (CSSTM). The
basic working principle of CSSTM follows a few steps: firstly,
an optical metamaterial is used to generate near field, sub-
diffraction-limited illumination patterns. These patterns are
changed by sweeping the input wavelength. Secondly, an
object close to the metamaterial surface is illuminated/
sampled by a series of these deep sub-wavelength patterns and
scatters light into the far field. Thirdly, by collecting the total
output intensity at each wavelength in the far field, the 2D
spatial information of the object is successfully encoded into a
1D spectral pattern (Fig. 1b). The spatial to spectral transform-
ation can be generally described by:

SðλÞ ¼
ðð
Hðx; y; λÞOðx; yÞdxdy; ð1Þ

where S is the spectrum, O is the object, and H is a series of
illumination patterns at different wavelengths λ. Finally, the
object is reconstructed through a sparse-based algorithm29,30

by using the known illumination patterns.
The resolution of CSSTM is mainly determined by the

resolution of illumination patterns, which is the highest
spatial-frequency wave a metamaterial can carry. We present a
numerical example of using a practical flat hyperbolic Ag/SiO2

multilayer. Our simulation results show that the reconstructed

image can resolve the object with a resolution as high as
12 nm, using the obtained spectral information from 400 nm
to 1.2 μm. The reconstruction algorithm is also known as com-
pressive sensing, which can reconstruct an object through a
limited number of measurements. Thus, it reduces the total
number of wavelength channels. We then discuss the working
conditions of this approach under various sparse conditions
of the object, desired resolutions, and SNR conditions. We
believe that CSSTM provides an alternative solution for super-
resolution imaging. Because it does not require extra measure-
ments for one super-resolution image (a spectrum can be
measured through a single shot of camera frame, or even
faster through pulse-stretching methods31), this technology
can also be potentially useful for high speed image
recording.32

II. Results & discussion
Dispersion properties of hyperbolic metamaterials

We take advantage of highly dispersive HMMs to generate
wavelength-dependent illumination patterns. This is done by
simulating alternating layers of thin films Ag and SiO2 with
thicknesses far below the operating wavelength. The stacked
thin films can be approximated by effective medium theory
(EMT) and the dispersion relation of HMMs can be written as:

k2x
εz

þ k2z
εx

¼ ω2

c2
; ð2Þ

where εz > 0 and εx > 0 (we ignore the y direction contribution
due to symmetry).

The isofrequency curves in the kx and kz plane are plotted
in Fig. 2a. The hyperbolic curve indicates that all the high-k
modes have almost the same group velocity direction.
Therefore, the in-coupled beam won’t diverge when it propa-
gates inside the HMM. In addition, the group velocity direc-
tion is wavelength-dependent, so that light with different wave-
lengths illuminates different locations on the top of the HMM
surface, respectively. This phenomenon can be clearly identi-
fied from the two-dimensional simulation results as shown in
Fig. 2b and c, where the in-coupled light through a 10 nm slit
in a Cr mask is split into two beams with well-defined direc-
tions and widths. This special property of HMMs has been
used for applications such as nanolithography.33 Here, we use
the FWHM of the beam on the top of the HMM surface to
qualitatively state the finest resolution of illumination pat-
terns. The FWHM is determined by the unit cell size of the
HMM, the slit’s width and intrinsic material losses.

In this letter, we use effective medium theory to predict the
performance of our CSSTM system. With approximation of
effective medium theory, the beam has a FWHM ∼ 20 nm at
500 nm when the total thickness of the HMM is 130 nm. The
FWHM becomes ∼27 nm when the thickness of the HMM
increases to 250 nm due to material loss.

It is worth noting that the unit cell size of the HMM also
affects the FWHM in practice. A supplementary plot (Fig. S1†)

Fig. 1 The concept of the compressive spatial-to-spectral transform-
ation microscopy (CSSTM). (a) Diffraction-limited image acquired by a
conventional objective lens. (b) Sub-diffraction-limited image recon-
structed from the metamaterial-based spatial-to-spectral transformer.
High-resolution spatial information is transformed into the spectral
domain by projecting a series of wavelength-dependent illumination
patterns as shown in (c) onto the object.
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shows the FWHM versus different sizes of the unit cells of the
HMM. A recent experiment on multilayer HMMs has improved
the unit cell size to a sub-10 nm scale.34

In a three-dimensional geometry, when a broadband plane
wave (non-polarized) is normally incident on the HMM
through a small hole (∼10 nm diameter), the pattern generated
on the output surface of the HMM is expressed as a concentric
rainbow (Fig. 2d). The larger the wavelength, the larger the
radius of the ring, but with ∼20 nm ring thickness (see Fig. 2e)
for each single wavelength. Therefore, a 1-to-1 mapping
between the wavelength and the ring diameter is formed.

Spatial to spectral transformation

Linking the wavelength with the illumination ring diameter
only provides 1D spatial information. To obtain a 2D spatial
image, we intuitively put multiple nanoholes (∼10 nm in dia-
meter and 20 of them in this specific example) on the bottom
of the HMM, as schematically shown in Fig. 3a. To make sure
that each pixel in an image has a unique encoded spectrum,
the mutual coherence of the transformation matrix H in eqn
(1) is used to quantitatively state the maximum coherence of
the encoded spectrum for any two pixels.35 It takes multiple
trials to obtain a good distribution for all the holes (Fig. 3b).
An object is placed on the surface of the HMM, which scatters
the near field light into the far field. To simplify the process
without losing the essence in physics, the wavelength-depen-
dence of scattering is ignored in this simulation but should be

calibrated and corrected in practice. Based on this assump-
tion, the transformation matrix H(xi,yi; λ) could be calculated
via simulating illumination patterns for all wavelengths
(Fig. 3c). Fig. 3d shows two exemplary illumination patterns at
two selected wavelengths. Each pixel shown in Fig. 3d has a
unique encoded spectrum from 400 nm to 1200 nm (Fig. 3e).

Since the illumination pattern is also polarization depen-
dent, one could also add two polarization states (x-polarized
and y-polarized) in the transformation to increase the total
number of measurements. The sets of all illumination patterns
with respect to both wavelength and polarization are illus-
trated by two movies (Movies 1 and 2) in the ESI.†

Let’s now divide the imaging area into N × N pixels. The
physical size of each pixel is deep sub-diffraction limited. The
object is represented as O(xi,yi) and the illumination pattern at
wavelength λ is represented as H(xi,yi,λ). Assume that a linear
interaction occurred between the object and illumination pat-
terns, then the detected total light intensity in the far field at a
certain wavelength is

IðλÞ � ΔxΔy
XN
i;j¼1

Oðxi; yjÞHðxi; yj ; λÞ ð3Þ

Reshape O(xi,yi) to a vector with size N2 × 1 and H(xi,yj,λ) to
a matrix with size M × N2, where M is the number of measure-
ments (i.e. wavelength channels), and Δx and Δy are the physi-
cal size of a pixel.

Fig. 2 The dispersive hyperbolic metamaterial (HMM) for the spatial-to-spectral transformation (CSST). (a) Isofrequency contours show that light of
different wavelengths propagates along different directions inside of the HMMs. (b) (c) Full wave simulation of the electric field in the HMM. Scale
bar: 100 nm. (d) Schematic illustration of the concentric rainbow formation on the top surface of the HMM. Broadband non-polarized light is
coupled into the HMM through a hole in a Cr layer. (e) 1D plot of intensity along the dashed line in (d) (at 1 nm above the HMM and SiO2 interface).
The 1 : 1 Ag/SiO2 multilayer HMM (250 nm thickness) is calculated using effective medium theory.
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Now we can re-write the equation in a matrix form

IM�1 � HM�N 2 � ON 2�1 ð4Þ

The effective measurement number M is limited by the
number of wavelength channels. M is typically smaller than N2

in any k-space limited system. Thus, these linear equations
cannot be directly solved. We use compressive sensing algor-
ithms to find a near-optimal estimation Ô of solution O with a

limited number of measurements M by assuming that the
object is sparse.

Imaging reconstruction

We firstly study the sparse-based reconstruction under ideal
conditions. A pixelated binary UCSD library logo (Fig. 4a) is
sampled via a series of illumination patterns (Fig. S2(a–f )†)
from 400 nm to 1200 nm with two linear polarization (x-polar-
ized and y-polarized) plane waves. The physical size of each

Fig. 3 The implementation of CSSTM for 2D imaging. (a) Schematic of a HMM spatial to spectral transformer (SST). Multiple nanoholes are ran-
domly distributed in a Cr photomask attached to the bottom of a HMM slab. (b) Distribution of 20 nanoholes and the location of the measured
object area. Each nanohole forms a circular, rainbow-like illumination pattern overlapping with the object. (c) Dataset of transformation: a stack of
illumination patterns controlled by both the wavelength and polarization. Wavelength: 400 nm–1200 nm. Polarization: x-polarized and y-polarized.
(d) Two examples of illumination patterns within the red dotted area in (b) generated by non-polarized light at 500 nm (Left) and 750 nm (Right),
respectively. Scale Bar: 10 nm. (e) Encoded spectra from 400 nm to 1200 nm of two exemplary pixels [(X4, Y1); (X20, Y4)] in (d).

Fig. 4 CSSTM reconstruction result under ideal conditions. (a) Test object. A simplified UCSD logo is pixelated to 20 by 20 pixels. Physical size per
pixel: 6 nm. (b) Simulated spectrum in the far field under two orthogonal incident polarizations. Each data point in the spectra represents the sum-
mation of the intensity in the far field at a given wavelength and polarization. Three sub-images in (b) show part of the object illuminated at wave-
lengths 480 nm (x-polarization), 532 nm (x-polarization) and 750 nm (y-polarization), respectively. A spectrum has 200 wavelength channels. (c)
Reconstructed image with high fidelity and resolution. Scale bar: 10 nm.
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pixel is set to be 6 nm, smaller than half of the smallest
FWHM of the illumination patterns (∼27 nm). Apparently, the
deep sub-wavelength object won’t be directly resolved in the
far field (Fig. S2(g–i)†), but the high spatial resolution infor-
mation is encoded into the spectrum (Fig. 4b). The reconstruc-
tion is carried out through the l1_ls algorithm.29 During recon-
struction, we found out that if an object is known to be sparse,
the reconstruction code tends to end up with a higher resolu-
tion image compared to the illumination patterns. For
instance, the reconstructed result in Fig. 4c can resolve two
lines with 12 nm separation. We consider this as another
advantage of compressive sensing, which uses a prior knowl-
edge of object sparsity and extrapolates the detecting band-
width in reconstruction.36

We then explore if the reconstruction is robust to noise.
Because we used a sparse-based algorithm, the result also
depends on the accuracy of the sparsity-constraint.
Qualitatively speaking, reconstruction is more robust to noise
when an object is sparse (fewer non-zero values). For instance,
Fig. S3† shows the reconstruction results of two objects with
different numbers of non-zeroes. One object contains only two
non-zero pixels (out of 400 unknowns), while the other object
contains ten non-zero pixels which form a ‘smiling’ face. Both
images are reconstructed when the SNR is 30 dB. The ‘smiling’
face starts to fail when the SNR falls to 20 dB, and the ‘two
dots’ start to fail when the SNR is 10 dB. Fig. 5 shows the
reconstruction accuracy versus object sparsity and SNR. The
reconstruction accuracy is defined as

C ¼

P
x;y

fImageðx; yÞ � Objectðx; yÞg
P
x;y

Imageðx; yÞP
x;y

Objectðx; yÞ ; ð5Þ

The reconstruction accuracy fails quickly when either the
object sparsity or SNR reaches a certain barrier. If we define a
threshold for the reconstruction accuracy, the iso-accuracy
contour in Fig. 5 stands for a working window of this method.

It should be emphasized that the illumination pattern sig-
nificantly affects the resolution of our CSSTM system. The

smaller the features of the illumination patterns are, the
higher the resolution of the object tends to be reconstructed.
In addition, our reconstruction results have higher resolution
than the illumination pattern, even under noisy signal con-
ditions. We understand this as a benefit of spatial frequency
bandwidth extrapolation induced by compressive sparsity-
based reconstruction.36 Like other extrapolation processes,
whether a reconstruction will be successful is highly depen-
dent on the noise level and the accuracy of the sparsity
constraints.

Therefore, the final resolution of the CSSTM is ultimately
determined by the achievable bandwidth (a half of the pixel
spatial frequency of the reconstructed image) with high fidelity
after the reconstruction. Based on the results shown in Fig. 4,
the resolution of CSSTM is ∼2 times better than that of the
illumination patterns generated by the HMM-based spatial-to-
spectral transformer.

The trade-offs between the image size, the sparsity of the
object and the imaging resolution (or pixel size) are linked by
the following relationship:27

M � C � μ 2ðHÞ � S � logðnÞ; ð6Þ

where M is the total number of effective measurements, μ is
the mutual coherence of the sensing matrix H in eqn (3), S is
the number of nonzero elements in the reconstruction basis, n
is the total number of unknowns, and C is a constant.

For a given transformation mentioned above, the mutual
coherence μ is related to the pixel size. A large pixel size
decreases the similarity of the encoded spectrum of any two
adjacent pixels. Thus, it results in a smaller μ, and allows for
the reconstruction of a less sparse object. However, the
imaging resolution must be sacrificed accordingly. On the
other hand, an increase in n means making a larger field of
view without changing the pixel size, but it requires either a
smaller S or a larger M for a successful reconstruction.
Therefore, based on what the actual sample would be, one may
need to find suitable working conditions by tuning these
parameters.

Fig. 5 Reconstruction accuracy versus signal noise ratio and sparsity. Left: Pixel size: 6 nm; field of view: 120 nm × 120 nm; right: Pixel size 10 nm;
field of view: 200 nm × 200 nm. The right side of the red dashed line is considered as accurate reconstructions.
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III. Conclusions

We explored the possibility of using metamaterials as a super-
resolution compressive sensing imager. We proposed a super-
resolution approach named compressive spatial to spectral
transformation microscopy (CSSTM), through which the super-
resolution spatial information is encoded into the spectral
domain and then retrieved by a sparse-based reconstruction
algorithm. Concept-proof simulation results are provided to
demonstrate the capability of this CSSTM method. One
exemplary design of the CSSTM shows successful image
reconstruction with 12 nm resolution and a field of view of
120 nm × 120 nm by utilizing 200 wavelength channels from
400 nm to 1200 nm. This approach is robust to noise when the
object is sparse.

In contrast to other super-resolution technologies, the
HMM-based CSSTM performs high-resolution scattering
imaging based on a single shot spectrum (or two if two polariz-
ations are used). This principle may also apply to fluorescence
imaging but it requires that the illumination spectrum can be
fitted into the fluorescence absorption band. Without the cost
of large numbers of measurements, we believe that CSSTM is
also beneficial when both temporal and spatial resolution are
required.

The metamaterial utilized in this work has a flat geometry,
which makes it possible to adapt wide-field imaging. However,
one challenge in wide-field imaging is to get enough measure-
ments for the increased number of object unknowns when its
field of view becomes larger. One potential solution is to
acquire diffraction-limited spectral images in the far field.
Then, each diffraction limited zone could be treated as a
single-shot-spectrum imager to reconstruct a high-resolution
image.

The CSSTM system implements an existing, practically
achievable Ag/SiO2 material system. The geometrically pat-
terned nanoholes can be made by existing nanofabrication
tools such as electron beam lithography or focused ion beam.
A calibration process of the illumination patterns might be
necessary when either the positioning of nanoholes or the
material property of the HMM is not accurate. The calibration
can be performed by high resolution NSOM measurement on
the HMM surface to extract near field patterns with respect to
various operation frequencies.
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