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Purpose: Compressed sensing theory has enabled an accurate, low-dose cone-beam computed

tomography (CBCT) reconstruction using a minimal number of noisy projections. However, the

reconstruction time remains a significant challenge for practical implementation in the

clinic. In this work, we propose a novel gradient projection algorithm, based on the Gradient-

Projection-Barzilai-Borwein formulation (GP-BB), that handles the total variation (TV)-norm regu-

larization-based least squares problem for the CBCT reconstruction in a highly efficient manner,

with speed acceptable for routine use in the clinic.

Methods: CBCT is reconstructed by minimizing an energy function consisting of a data fidelity

term and a TV-norm regularization term. Both terms are simultaneously minimized by calculating

the gradient projection of the energy function with the step size determined using an approximate

Hessian calculation at each iteration, based on the Barzilai-Borwein formulation. To speed up the

process, a multiresolution optimization is used. In addition, the entire algorithm was designed

to run with a single graphics processing unit (GPU) card. To evaluate the performance, the

Shepp-Logan numerical phantom, the CatPhan 600 physical phantom, and a clinically-treated

head-and-neck patient were acquired from the TrueBeamTM system (Varian Medical Systems, Palo

Alto, CA). For each scan, in total, 364 projections were acquired in a 200� rotation. The imager has

1024� 768 pixels with 0.388� 0.388-mm resolution. This was down-sampled to 512� 384 pixels

with 0.776� 0.776-mm resolution for reconstruction. Evenly spaced angles were subsampled and

used for varying the number of projections for the image reconstruction. To assess the performance

of our GP-BB algorithm, we have implemented and compared with three compressed sensing-type

algorithms, the two of which are popular and published (forward–backward splitting techniques),

and the other one with a basic line-search technique. In addition, the conventional Feldkamp-

Davis-Kress (FDK) reconstruction of the clinical patient data is compared as well.

Results: In comparison with the other compressed sensing-type algorithms, our algorithm showed

convergence in �30 iterations whereas other published algorithms need at least 50 iterations in

order to reconstruct the Shepp-Logan phantom image. With the CatPhan phantom, the GP-BB algo-

rithm achieved a clinically-reasonable image with 40 projections in 12 iterations, in less than

12.6 s. This is at least an order of magnitude faster in reconstruction time compared with the most

recent reports utilizing GPU technology given the same input projections. For the head-and-neck
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clinical scan, clinically-reasonable images were obtained from 120 projections in 34–78 s converg-

ing in 12–30 iterations. In this reconstruction range (i.e., 120 projections) the image quality is visu-

ally similar to or better than the conventional FDK reconstructed images using 364 projections.

This represents a dose reduction of nearly 67% (120=364 projections) while maintaining a reasona-

ble speed in clinical implementation.

Conclusions: In this paper, we proposed a novel, fast, low-dose CBCT reconstruction algorithm

using the Barzilai-Borwein step-size calculation. A clinically viable head-and-neck image can be

obtained within �34–78 s while simultaneously cutting the dose by approximately 67%. This

makes our GP-BB algorithm potentially useful in an on-line image-guided radiation therapy

(IGRT). VC 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3679865]
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I. INTRODUCTION

In recent years, the introduction of cone-beam computed to-

mography (CBCT) in radiation therapy has enabled a pre-

cise, on-line positioning (and on-line=off-line replanning) of

patients.1,2 This is possible due to the wealth of information

contained in the three-dimensional (3D)-CBCT images

including (1) anatomic information,1,2 (2) geometric infor-

mation,3,4 and (3) CT numbers for possible dose calculations

for treatment verifications and plan re-optimizations.5,6

Because CBCT uses ionizing x-rays to image, however,

there is a legitimate concern about hazardous radiation expo-

sure to patients.7 Due to this, excessive use of imaging

should be prohibited and the benefits-vs-harm ratio should

be carefully weighed and debated for each treatment, espe-

cially for pediatric patients. This concern has now become

an issue of central importance in North America, not only in

radiation oncology, but in broader radiology community

(e.g., Image WiselyTM and Image GentlyTM campaigns).

There are rather straightforward ways to reduce the imag-

ing dose for CBCT, either (1) minimize the number of x-ray

projections, (2) reduce the current setting in the x-ray tube

(mA), and=or (3) reduce the total exposure time (ms). With

the current-standard Feldkamp-Davis-Kress (FDK) recon-

struction algorithm,8 however, reducing the projections will

cause aliasing artifacts (for example, see Figs. 6 and 7) the se-

verity of which depends inversely on the number of projec-

tions, and if the mA and=or ms is reduced, the noise in the

image would increase. Both of these properties of the FDK

are extremely undesirable, especially if the images are used

for guiding precision radiation therapy for cancer eradication.

In recent years, the exciting advances in compressed sensing

theory has shown that sparse signals (at least in some known

transform domain) can be reconstructed from much smaller

number of samples than the Nyquist frequency would

mandate.9–21 In layman’s terms, this means that nearly ideal

images can be reconstructed even if only a few projections are

available. This in turn means that the imaging dose can be safely

reduced without compromising the image quality. Past works

have shown that for CT-type reconstructions (both fan- and

cone-beam), the total variation (TV) formulation has been partic-

ularly useful in exploiting prior knowledge of minimal variation

in the x-ray attenuation characteristics across the human

body.9,11–13,16–19,21 However, a practical implementation of this

method still remains a challenge. The main problem is the

iterative nature in solving the TV-based compressed sensing

formulation; in general it requires multiple iterations of forward

and backward projections of large datasets and cannot be

completed in a clinically feasible time frame (e.g., <1 min).

Solving this rather cumbersome problem would require multiple

innovations encompassing (1) computationally efficient parallel-

programming with proper hardware and (2) mathematical

formulation of an efficient search algorithm for fast-solution-con-

vergence. The former issue has been resolved successfully with

the use of graphics processing units (GPU).22–25,30 This approach

reduced the computational time from several hours to few

minutes.22,23 The motivation of this work is to propose a solution

to the latter issue; to achieve a clinically realistic reconstruction

time(s) on GPU hardware with an equivalent or better image

quality for on-line image-guided radiation therapy (IGRT).

In this work, we propose a gradient projection algorithm

that handles the TV-norm regularized least squares problem

based on the Barzilai-Borwein (BB) formulation26,27 in such

an efficient manner that a clinically-reasonable patient image

is reconstructed in �12–30 iterations and a total time of

�34–78 s using a single GPU card (NVIDIA GTX 295,

Santa Clara, CA). Comparison of our novel approach with

the FDK and other published compressed sensing techniques

are presented in detail with numerical and physical phan-

toms, and head-and-neck clinical patient data.

II. METHODS AND MATERIALS

The main problem is to solve the constrained convex opti-

mization problem of the form

min
x

f ðxÞ ¼
����Ax� b

����2
2
þ kTVðxÞ s:t: x � 0 (1)

where x¼ unknown CBCT volume image, A¼Radon

transform operator, b¼measured projections data, k¼ regu-

larization constant, and TV¼Total Variation (TV) regulari-

zation term. In this paper, the matrices are denoted as a

boldface-uppercase letters and the vectors are denoted as

a boldface-lowercase letters. Note that, in Eq. (1), the

three-dimensional (3D) CBCT volume, x(i,j,k), is cast into a

vector, x(l). Thus, the two volume representations, x(i,j,k)
and x(l), are used interchangeably in this paper.

The TV term we used in this study is defined as
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TV x i; j; kð Þð Þ ¼
X

i; j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðiþ 1; j; kÞ � xði; j; kÞ½ �2þ xði; jþ 1; kÞ � xði; j; kÞ½ �2þ xði; j; k þ 1Þ � xði; j; kÞ½ �2

q
(2)

In its form, the first term in Eq. (1) is the fidelity term, it

enforces fidelity of x with the measured projections data.

The second term (the regularization term) promotes sparsity

inherent in the x-ray attenuation characteristics of the human

body.

Algorithms of significant acceptance and popularity in

solving Eq. (1), so far, have mostly been based on separating

the two terms and optimizing them individually in an alter-

nating manner, i.e., the forward–backward splitting

technique.9,11,16,17,21–23 Figure 1(a) illustrates this approach.

At iteration n, as commonly used in the gradient descent

algorithms, a fixed small step-size aconst is chosen to reduce

the fidelity term to obtain an intermediate solution xnþ1
0. The

(nþ 1)-th solution xnþ1 which has the minimal total varia-

tion is then searched around the xnþ1
0 to complete an itera-

tion. This procedure is repeated until a desired solution xopt

is achieved. However, this approach may not result in a fast

convergence due to the two-step approach. Intuitively, an

algorithm that optimally reaches xnþ1 in a single step, at

each iteration, using a variable step-size (aopt) would be

more efficient computationally and faster in convergence

[see Fig. 1(b)]. This is the intuition which led to the algo-

rithm proposed herein.

The goal is a gradient projection algorithm that iteratively

seeks a solution to Eq. (1) in the direction of the projected

gradient while enforcing a non-negativity of the found solu-

tion. Let gn be the gradient of f(xn) defined as

gn ¼ 2ATðAxn � bÞ þ krTVðxnÞ (3)

where
T

is the transpose operator of the Radon transform ma-

trix A, which is physically interpreted as a back projection

operation on x. We then solve Eq. (1) iteratively using the

gradient projection method

xnþ1 ¼ ½xn � anpn�þ where ½	�þ ¼ max½	; 0� (4)

where

pnðlÞ ¼
gnðlÞ if gnðlÞ � 0 or xnðlÞ > 0

0 otherwise

�
(5)

Here, an denotes the step size at iteration n, l denotes the

voxel position index, and pn denotes the projected gradient

of the function f(x) at xn.

The speed of convergence would be highly dependent on

choosing a proper “step-size” an in Eq. (4), at each iteration.

Remember, the less the number of iterations used to find the

optimal solution x*, the less the number of times one needs

to calculate the A and AT, which are computationally very

expensive.

There are a few approaches in choosing an appropriate an

including (1) a fixed, small an throughout, and (2) a variable

an obtained through a back-tracking line-search method that

satisfies a certain condition for ensuring convergence. For

example, the well-known Armijo condition28 enforces not

only a monotonic decrease in the objective function but also

a sufficient decrease of the objective function in each

FIG. 1. Illustrations of (a) forward–backward splitting-type optimization, and (b) our one-step proposed approach to solve the TV-based constrained convex

optimization problem in Eq. (1).
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iteration for guaranteeing the convergence. The first, “fixed

step-size” method is simple to implement yet finding an

appropriate an is not trivial as there’s a tradeoff between con-

vergence speed and image quality. The second, “line-search”

method is popular and guarantees a monotonic convergence

but incurs a relatively high computational burden as the

back-tracking line-search is an iterative process in itself,

which is logically similar to that illustrated in Fig. 1(a), i.e.,

an iteration within iteration.

In this paper, a third alternative method is proposed using

an approximate second-order solver, proposed by Barzilai

and Borwein (BB) (Refs. 26 and 27) where the objective

function may not be monotonically decreasing as in the

back-tracking “line-search” method, but a much faster con-

vergence is achieved. Unlike most traditional approaches

that ensure convergence to an optimal solution by imposing

a rather conservative condition of monotonic decrease of the

objective function at each and every iteration, the BB

method relaxes this constant decrease requirement in order

to achieve even faster convergence.26,32,33 Specifically, the

conventional approaches calculate each step-size based on

the current gradient of the cost function. As a result, a mono-

tonic convergence is guaranteed throughout the iterative pro-

cess. However, in the BB approach, the step-size is chosen

based on both the current gradient and the previous gradient

which could result in a nonmonotonic convergence. Utiliza-

tion of this additional information (i.e., the past gradient)

results in a faster convergence although the monotonic con-

vergence behavior is not guaranteed. Basically, it calculates

each step with the formulation [compare with Eq. (4)]

xnþ1 ¼ ½xn �H�1
n pn�þ (6)

where Hn is an approximation to the true Hessian of f(x) at

xn (approximate second-order solver). To calculate H�1
n , the

BB formulation makes a simple approximation to the

Hessian by setting Hn¼ g(n)I, where I denotes an identity

matrix and g(n) is chosen to approximate the true Hessian

over the most recent two iteration steps as

pn � pn�1 
 gðnÞ½xn � xn�1� (7)

where g(n) is calculated at each iteration that satisfies Eq. (7).

In practical implementation, the optimal g(n) is solved in the

least squares sense by

gðnÞ ¼ ½xn � xn�1�T ½pn � pn�1�����xn � xn�1

����2
2

(8)

Once g(n) is calculated, the Eq. (6) is updated by

xnþ1 ¼ ½xn � ðgðnÞÞ�1pn�þ (9)

For n¼ 0, since xn-1 and pn-1 in Eq. (8) are not known yet,

we initialize (g(n¼ 0))�1 as

ðgð0ÞÞ�1 ¼
����gðnÞ����2

2����AgðnÞ
����2

2

(10)

which is the closed-form solution of the optimal step size in

the quadratic fidelity term in Eq. (1).28

The advantage of this technique is at each iteration one

needs to carry over only xn-1 and pn-1 to calculate g(n), which

must be calculated in the previous step anyway. Thus, is

unlike the Gradient-Projection-Barzilai-Linesearch GP-BL

method where the step size is calculated via an iterative pro-

cedure [step 3 in Fig. 2(c), more on this later], there are no

extra calculations=iterations that need to be performed to

compute an which affects the speed of the optimization

much favorably. Second, as found in the original BB publi-

cation,26 the convergence of Eq. (6) should be faster than the

standard first-order methods such as the back-tracking line-

search discussed above, a similar result is shown in this

work. Finally, since the entire f(x) is minimized simultane-

ously in Eq. (1) and not iteratively as in the other works

FIG. 2. Illustration of the computational processes required at each iteration for the four algorithms: (a) ASD-POCS, (b) STF, (c) GP-BL, and (d) GP-BB.
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discussed above; and shown in Fig. 1(a), the overall

complexity of the implementation is simplified while still

guaranteeing an optimal solution.

In our implementation of this Gradient-Projection-Barzi-

lai-Borwein (GP-BB) method, to speed up the algorithm

further, the following has been adopted:

(a) For n¼ 0, initialize x0¼FDK. This result in a faster

convergence compared with setting x0¼ 0.

(b) Two-resolution-level optimization. That is, first set x
to 256� 256� 70 volume, optimize, then resample

to 512� 512� 70 volume for a second-level opti-

mization. The resolution at level one and two

are 0.97� 0.97� 2.0-mm and 0.49� 0.49� 2.0-mm,

respectively.

(c) The entire code is structured and implemented in C

with the CUDA programming environment (NVIDIA,

Santa Clara, CA) to utilize the massive parallel compu-

tational capability of the GPU hardware. We used a

single GTX 295 card (�$500US) that consists of 480

processing cores with 1.24 GHz clock speed and 1792

MB memory. In terms of CPU, an Intel CoreTM i7 with

2.68 GHz clock speed, 12.0 GB DDR3 RAM, on a

64-bit Window 7 OS is used.

Three major computational tasks were parallelized in the

CUDA environment: (1) the forward projection A, (2) the

back projection AT, and (3) the vector operations to calculate

g(n), Ax-b, TV(..), etc. For the forward projection operations,

each detector pixel is set as a GPU thread and the image vox-

els which lie along the path from the cone-beam source to

the corresponding pixel are summed. Since this summation

of voxels, in the ray path, can be independently computed

for each detector pixel, this feature has been utilized in the

GPU coding as a parallel computations.30 For the back pro-

jection operations, we have instead set each image voxel as a

GPU thread. Similar strategies were implemented on the

vector operations as well.

To evaluate the performance of our GP-BB algorithm, we

have compared it with three other algorithms, two of which

are published. First, the adaptive-steepest-descent-projections-

onto-convex-set (ASD-POCS) method proposed by Sidky and

Pan17 [described in Fig. 1(a)] was implemented. Second, the

soft-threshold filtering approach (STF) proposed by Yu and

Wang21 was implemented. This algorithm is essentially simi-

lar to the ASD-POCS except that an approximate solution is

proposed over iteratively calculating the second step, shown

in Fig. 1(a) (i.e., minimizing the total variation step) in order

to reduce the computational burden. Third and finally, we

have implemented a first-order Gradient-Projection-Back-

tracking-Linesearch (GP-BL) algorithm that attempts to

simultaneously minimize both terms in Eq. (1) in a single step

as opposed to the forward–backward splitting technique in

ASD-POCS and STF. This single step approach is similar to

the GP-BB except that an acceptable an in Eq. (4) is searched

without the approximate second-order Hessian information as

explored in the GP-BB method. Essentially, at each iteration

in Eq. (4), an is found through the back-tracking line-search

along the direction of the current gradient.

The computation tasks at each iterative process for each

of these algorithms are illustrated in Fig. 2. First, the ASD-

POCS iteration is shown in Fig. 2(a). The algorithm starts by

finding the intermediate solution xnþ1
0 through a SART-type

approach with a constant step-size where a promotion of the

data fidelity term only is considered (step 1). The TV-norm

is then minimized around this xnþ1
0 through an iterative,

convex optimization process for which we employed a com-

monly used steepest descent approach in this paper (step 3).

Therefore, at each iterative step of the ASD-POCS algo-

rithm, an additional iterative process is required (step 3).

Second, the STF approach proposed by Yu and Wang21 is

illustrated in Fig. 2(b). As shown on the figure, the algorithm

starts exactly same as the ASD-POCS for step 1. However,

instead of using an iterative, convex optimization procedure

to minimize the TV around the intermediate solution xnþ1
0,

the algorithm employs a batch, noniterative, soft-threshold

filtering algorithm to remove the extra iteration step and

hence reduces the computational time. The soft-threshold fil-

tering procedure is denoted by Sw;1ðxnþ1
0Þ in step 2 on Fig.

2(b). It is a regularization function that updates the xnþ1
0 as a

function of TV (xnþ1
0) using a closed-form heuristic formula.

Interested readers are encouraged to read Yu and Wang21 for

details. Third, the GP-BL algorithm proposed here as an al-

ternative to GP-BB is illustrated in Fig. 2(c). It starts by cal-

culating the gradient of the cost function consisting of the

data fidelity and the regularization terms (step 1), followed

by a projection of the gradient (step 2). At step 3, a back-

tracking line-search is performed by evaluating the objective

function with a decreasing step-size an until the well-known

Armijo condition stated by the inequality in step 3 is met.

This not only enables a monotonic decrease in the objective

function but also satisfies a sufficient decrease criterion for

convergence to the optimal solution. In this study, the con-

stants d and b are fixed to 0.02 and 0.7, respectively. Once

the step-size an is obtained, a gradient descent step is con-

ducted while enforcing the non-negative constraint (step 4).

Finally, the proposed GP-BB algorithm is illustrated in

Fig. 2(d). Referring to the figure, steps 1 and 2 are the same

as those in the GP-BL algorithm. However, as we have illus-

trated our algorithm mathematically, the iterative back-

tracking line-search in Fig. 2(c) is replaced by a much sim-

pler, noniterative vector operations for the computation of

g(n) (step 3). Therefore, favorably compared with the GP-BL

approach, the step-size search is performed without the extra

iterative calculation of the back-tracking line-search. The

gradient descent step is conducted using an¼ (g(n))�1 (step

4). It should be noted here though that there have been very

recent studies reporting the effectiveness of the BB-based

approaches for CT reconstruction.13,35 These efforts could

complement our work in developing the most mature form

of the BB-based CT=CBCT reconstruction techniques.

The Shepp-Logan numerical phantom, the CatPhan 600

physical phantom (The Phantom Laboratory, Salem, NY),

and a clinically-treated head-and-neck patient acquired from

the TrueBeamTM system (Varian Medical Systems, Palo

Alto, CA) are used for comparison purposes. For the True-

BeamTM scans, a total of 364 projections were acquired in a

1211 Park et al.: Fast CBCT reconstruction using Barzilai-Borwein formulation 1211
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200-degree rotation, in a full-fan mode. The imager has

1024� 768 pixels with 0.388� 0.388-mm resolution. This

was down-sampled to 512� 384 pixels with 0.776� 0.776-

mm for the reconstructions. Evenly spaced angles were

subsampled and used for varying the number of projections

for the image reconstruction.

III. RESULTS

Figure 3 shows the reconstructed 2D images of the

Shepp-Logan phantom using the four algorithms described

earlier. A total of 40 projections in fan-beam geometry

were used for the reconstructions. As can be seen, the

Gradient Projection (GP)-type algorithms outperforms the

forward–backward splitting-type algorithms in terms of

image quality and speed of convergence. At about 50 and 30

iterations, the GP-BL and GP-BB algorithms show conver-

gence, whereas the ASD-POCS and STF algorithms clearly

still needs further convergence at 50 iterations. Visually, the

GP-BB shows the fastest convergence and this is quantita-

tively demonstrated in Figs. 4 and 5. In Fig. 4, the line pro-

file comparison is shown after 30 iterations, for example. It

is clear from this figure that the level of agreement to the

ground truth goes in the order of GP-BB>GP-BL>STF,

and ASD-POCS. This finding holds true at all levels of

iterations, as illustrated in Fig. 5. Here, the relative error is

defined as the mean-squared percent error from the ground

truth pixel values:

ReletiveErrorð%Þ ¼

P
i;j;k

ðxi;j;k � xGroundTruth
i;j;k Þ2

P
i;j;k

ðxGround Truth
i;j;k Þ2

� 100 (11)

where xi,j,k corresponds to the voxel values in the recon-

structed volume x and xGroundTruth refers to the ground truth

values of the Shepp-Logan phantom used. As can be seen

from the figure, all three algorithms other than the GP-BB

continue to decrease at 50 iterations, whereas the GP-BB

algorithm reaches saturation at �25–30 iterations. One thing

to note is that, due to the nonmonotonic feature of the BB

algorithm discussed in Sec. II, the relative error does not

decrease in a smooth manner due to the inherent properties

of calculating the step size without conducting a line-search

at each iterative step.

In order to show the computational efficiency of each

algorithm, we have measured the computational time per-

formances of the four algorithms implemented on the same

GPU card (see Table I). To conduct a fair comparison, we

kept all experimental conditions the same for all algorithms.

That is, the number of iterations was set to 50, the recon-

struction volume was set to 256� 256� 64, the number of

projections was 42, the detector size was 512� 384, the

unknown CBCT volume image was all initialized to zero

(i.e., x(0)¼ 0), and the multiresolution optimization was not

used. It is found that the GP-BL algorithm takes the longest

time to compute due to the high computational cost of con-

ducting the back-tracking line-search at each iteration. It can

also be observed that those algorithms that have iterations

within iterations, i.e., ASD-POCS and GP-BL, the standard

deviation is also large compared to the other two algorithms

that do not have a second iteration loop. The GP-BB and

STF algorithms have a consistent computational time and,

moreover, their convergence is noticeably faster than the

other two algorithms. It should be noted, though, that the

implementations of the ASD-POCS and STF may not have

been exactly reproduced as the ones originally proposed and

implemented, as all of these algorithms were written in-

house. Although we attempted to make the fairest compari-

son by best implementing the original ideas of the algorithms

using the published information, it is difficult to reproduce

the same exact performance due to a difference in the experi-

mental setup and data used. As a result, we acknowledge

that our evaluations of these algorithms may not represent

their best possible implementation and thus performance and

image quality.

In addition to the comparisons with the compressed

sensing-type algorithms, we’ve also compared the GP-BB

against the conventional and commercially-used, filtered

backprojection-type algorithm proposed by Feldkamp,

Davis, and Kress (FDK, 1984).8 Figure 6 show the 3D

volumes reconstructed with the two algorithms, using some

or all of the 364 projections acquired from the TrueBeamTM

CBCT system. Reconstruction times are labeled on the

FIG. 3. The reconstructed images of the Shepp-Logan phantom, using the re-

spective four algorithms, as a function of 10, 30, and 50 iterations. A total of

40 projections in fan-beam geometry were used for the reconstructions.
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figure. As can be seen, even with the dose reduction to 1=9th

(¼40=364 projections), Fig. 6(b) shows a reasonable image

quality achieved by the GP-BB algorithm comparable to that

of the FDK reconstructed image using all of 364 projections

[Fig. 6(c)] with less noise, while completing this in under

12.6 s. Needless to say, the image quality of Fig. 6(b) is bet-

ter with minimal aliasing artifacts compared with that of

Fig. 6(a), which is FDK reconstructed volume using the

same 40 projections. To note, this achievement of 12.6 s is

about an order of magnitude faster than that of the latest

reports on GPU-accelerated forward–backward splitting-

type algorithms, discussed in Fig. 1(a).22,23

Figure 7 shows a matrix view of the various image qual-

ities achieved using the GP-BB algorithm as functions of

both the number of projections and the number of iterations,

for the head-and-neck example patient. The window and

level were kept the same for all images. The first row show

the images reconstructed with the FDK for comparison. It is

observed that as the number of projections increases, the

image quality increases in both the FDK and GP-BB algo-

rithms, and as the number of iterations increases in GP-BB,

the image quality increases too. It is also observed that, in

GP-BB, the qualitative increase in image quality is relatively

more significant from 90 to 120 projections than from 120 to

180 projections. This also means that the FDK-initialized

GP-BB algorithm always does better than just the FDK

alone, for any number of iterations per given number of

projections.

Table II shows a comprehensive list of the reconstruction

times recorded for various combinations of input condition,

encompassing that of the examples shown in Fig. 7. From

this list and Fig. 7, we can deduce that, although subjective,

visually a “reasonable” image quality for clinical use can be

obtained in the range of 12–30 iterations with 120–180 pro-

jections. The range of reconstruction times would be

between 34 and 117 s, that is, all are within �2 min or less.

In terms of dose reduction, this would be on the order of

�1=3–1=2 depending on the projections used (i.e., 120=364

or 180=364 projections, respectively).

Figure 8 displays, side-by-side, the GP-BB-reconstructed

images using 120 projections [Figs. 8(b)–8(e)] in closer

comparison with the FDK-reconstructed image using 364

projections [Fig. 8(a)]; currently in-use in clinic). The

images using only the 120 projections are displayed here, as

opposed to images using 180 projections, since our interest

is in generating a reasonable quality images with a mini-

mally necessary radiation dose. Also, as mentioned, there’s a

FIG. 4. Line profiles of the respective four algorithms with the (a) full line across the Shepp-Logan phantom, and (b) magnified view of the right one-third.

The figure inset shows where the line profiles were generated.

FIG. 5. Mean-squared relative percent error as a function of the number of

iterations, for the respective four algorithms. The Shepp-Logan numerical

phantom was used as the gold standard.

TABLE I. Computational time recorded to run 50 iterations.

(s) ASD-POCS STF GP-BL GP-BB

Total computational time 60.47 22.77 66.37 24.56

Average computational time=iteration 1.20 0.45 1.32 0.49

SD 0.36 0.03 0.18 0.04
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relatively more benefit in terms of image quality going from

90 to 120 than from 120 to 180 projections (Fig. 7), i.e.,

diminishing increase in image quality for a given increase in

dose. The GP-BB-reconstructed image using 364 projections

is also displayed [Fig. 8(f)] to show the limiting image qual-

ity that can be achieved with the GP-BB algorithm. First of

all, the upper-limit GP-BB image using 364 projections is a

visually better quality image than that of the FDK (i.e., less

noise, streaking artifacts around bones, etc.), which reaffirms

the result shown in Fig. 7; given equal dose the GP-BB

always does better. But, more importantly, the image qual-

ities of the 120-projection-images are comparable to the

FDK image and are reconstructed within a reasonable

34–78 s. Of course, the necessary image quality for clinical

use is quite subjective and requires further (clinical) testing

to determine for each site, which is of our future research, it

is still encouraging that a “visually” similar quality images

can be obtained in one-third the dose in a “reasonable” time

frame. To the best of our knowledge, this computational

speed achieved using the GP-BB algorithm is the fastest

compressed sensing-type optimization that have been pro-

posed for the CBCT reconstruction to date.12,16,17,20–23

IV. DISCUSSION

IV.A. Algorithm performance

The translation of compressed sensing-based CBCT recon-

struction algorithms onto radiation therapy clinical settings

has been difficult due to the fact that the mathematical formu-

lation is solved numerically and not analytically, thus requir-

ing a prohibitive time to solve. A single, complete iteration

involves at least one forward and one backward projection

calculations, which are computationally expensive. Although

significant amount of computational time can be spared by

parallelizing the task with GPU programming,22–25,30 still, the

majority of time (e.g., >80%) spent in the reconstruction is on

calculating the forward and backward projections. Therefore,

for an algorithm=technique to be efficient, it must (1) require

a minimal number of forward and backward projection calcu-

lations per iteration, and (2) converge in a minimal number of

total iterations.

Besides the well-known forward–backward splitting tech-

nique that we compared in this work, there are other

FIG. 6. Spatial and contrast resolution slices of the reconstructed CatPhan

600 phantom using (a) FDK with 40 projections, (b) GP-BB with 40 projec-

tions in 12 iterations, and (c) FDK with 364 projections. The reconstruction

times are listed on the figure. FIG. 7. A matrix view of the various image qualities achieved, using the

GP-BB algorithm, as functions of number of projections and number of iter-

ations, for the head-and-neck example patient. The window and level were

kept the same for all images.
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compressed sensing-based methods with a focus on achieving

faster convergence than previously reported12,13 (such

as based on Nestrov’s first-order method). However, on

reviewing their works, it was observed that although the

convergence rate (determining the number of iterations

needed to reach a desired solution) outperforms the comparing

counterparts, the algorithms require multiple forward and

backward projection calculations at each iteration12 or an

extra iterative procedure to calculate the additional unknown

parameters13 leading to an increased reconstruction times.

The nonconvex prior image constrained compressed sensing

(NCPICCS) algorithm reported by Ramirez-Giraldo, et al.29

also suffers from the similar complexities where an extra-

calculation of forward and backward projections is required to

calculate each step size. The GP-BB algorithm, on the other

hand, requires (1) only one forward and one backward projec-

tion calculations per iteration, which is the least number

required for solving any iterative reconstruction techniques,

and (2) a simple gradient step-size calculation [i.e., Eq. (8)]

that needs only the prior and current values of the gradient

and the image volume which occupy <300 MB of memory,

thus facilitating easy incorporation onto a single GPU card

memory (1.7 GB storage). In our implementation, calculating

the step size takes a negligible time, so the great majority of

the time is spent on the forward and backward projection

calculations (e.g., >98% of time). This demonstrates that the

GP-BB algorithm requires only a minimal computational load

needed to reach a solution.

IV.B. Dose reduction

It needs to be stated that, if reconstruction time is of no

issue and thus enough iterations are allowed, all of the com-

pressed sensing-type algorithms evaluated in this study will

eventually reach an optimal solution as anticipated from Fig.

5. That means, if an equal number of projections are used

with each algorithm, then the achieved image quality at the

end will be identical, and hence, no benefit in terms of dose

and=or image quality will be observed for any one algo-

rithm. However, we do not have an infinite time to spare,

especially in an on-line IGRT environment, and hence, an

algorithm that can produce the most optimal image under a

reasonable time and with the least amount of projections

(i.e., dose), is favored. Our proposed GP-BB algorithm fits

relatively well in this respect. In the Catphan phantom

experiment, the GP-BB produced a reasonable image with a

highly undersampled projections (40=364 % 89% dose

reduction; see Fig. 6) in �12.6 s. However, for a clinical

patient case, about 120 projections or more were needed to

generate a reasonable quality images, taking a respectable

�34–78 s. This achievement still represents a significant

dose reduction of %67%, but any further dose reduction

(i.e., less number of projections) is generally not recom-

mended due to a fast degradation of the image quality,

although the reconstruction times will further decrease as the

number of projections do. This has also been the observation

of earlier works.19,22,23 The possible reason for needing

more projections in patients than in phantoms is that the in-

ternal anatomy of humans are relatively less sparse, and thus

require more data to properly represent it. In addition, since

the sparseness is organ-patient specific, much research is

needed to determine the appropriate number of projections

TABLE II. List of the reconstruction times recorded for various projections

and iterations tested.

Time (s) No. of projections (views) used

No. of iterations 60 90 120 180 364

FDK 0.27 0.34 0.50 0.75 1.45

6 9.891 14.48 19.25 28.35 58.11

12 17.58 25.57 33.77 49.94 101.83

18 24.88 36.55 48.21 71.92 146.51

24 32.92 47.62 62.86 92.86 188.37

30 39.91 58.87 77.99 116.55 234.51

FIG. 8. Selected images from Fig. 6; (a) FDK using 364 projections, (b) GP-

BB with 12 iterations using 120 projections, (c) GP-BB with 18 iterations

using 120 projections, (d) GP-BB with 24 iterations using 120 projections,

and (f) GP-BB with 30 iterations using 364 projections. The reconstruction

times are listed on the figure.
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needed, and hence, the achievable dose reduction, for each

organ and patient. The appropriate mAs setting per projec-

tion is another parameter that needs to be examined. Utiliz-

ing prior information such as the planning CT would be a

one good way to decide what dose reduction is possible-

appropriate for each case.

IV.C. Regularization parameter k

The regularization parameter k [Eq. (1)] is one of the

most influential parameters affecting the image quality. It

was our experience that the higher this value, the blurrier

and smoother the images, and the smaller it is, the sharper

and noisier the images. This is due to the fact that k is the

weighting factor for the TV-norm regularization term in

Eq. (1). Thus, if k is high, then more weight is given in the

GP-BB optimization to minimize the variation across the

image, and hence, the blurrier but smoother the look. Oppo-

sitely, if k is low, then more weight is given to the fidelity

term in Eq. (1), and hence, the high frequency information

will survive, thus preserving the noise and streaks. For

example, we observed some irregular ripples in a uniform

phantom region, in Fig. 4, when a small k is applied, demon-

strating the importance of a proper=optimal k selection.

Recently, there have been considerable interests in opti-

mizing the k value in a regularization-type optimization

problems.33,34 Although the purpose of these works is for

different applications, we anticipate that similar strategies

can also be applied to the TV-based CBCT reconstruction

problem as well. But, for now, since there is no global stand-

ard in k value(s) (Ref. 19) for CBCT reconstructions, the

selection of k was subjectively picked by painstakingly

repeating a large range of values. From this experience, we

learned that for fewer projections, a relatively high k is

needed to suppress the overwhelming noise and streaks,

while for more projections, a relatively low k is sufficient.

Specifically, with 100 or less projections, we set k¼ 0.0075,

and for >100 projections, we set k¼ 0.0025, for the head-

and-neck patient case. Obviously, more research is needed in

finding an optimal k values for various situations, and that

this value is likely not only number of projections depend-

ent, but will also be patient and site dependent as well. For

best clinical practice, an automated selection of k based on a

prior knowledge, whatever that may be (including a planning

CT), will help facilitate the clinical translation of this tech-

nology into a busy on-line radiation therapy environment.

IV.E. Future works

In this study, we limited our investigation of the newly

proposed GP-BB algorithm to feasibility tests using digital

and physical phantoms and a patient case. We have learned

that the new algorithm performs relatively well with other

published algorithms, and that a reasonable clinical head-

and-neck CBCT image can be obtained in about a minute or

less. Therefore, the next step is to test this algorithm on vari-

ous clinical sites, including the half-fan scans (thorax, abdo-

men, pelvis, etc.), optimize the k value for the various sites,

check the stability of CT numbers for dose calculation

purposes, and perform a rigorous image registration testing

with the planning CT to calculate the motion deltas for the

on-line IGRT use. Determining an appropriate k value for

each clinical situation may be quite difficult to do. An impor-

tant next step, therefore, is to determine a standard method-

index for evaluating the image quality appropriate for the

IGRT use, to aid in the search for the best-fit k values.

Nonetheless, our proposed GP-BB algorithm brings us

one step closer to reducing the radiation dose without com-

promising the image quality, in an on-line IGRT environ-

ment, making the iterative CBCT reconstruction approach

more practical.

V. CONCLUSIONS

In this paper, we proposed a novel, fast, low-dose CBCT

reconstruction algorithm using the Barzilai-Borwein step-

size calculation. A clinically viable head-and-neck image

can be obtained within �34–78 s while simultaneously cut-

ting the dose by approximately 67%. This makes our GP-BB

algorithm potentially useful in an on-line IGRT.
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