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Abstract
The dielectric metasurface has become a powerful tool for compact optical components with
various wavefront controlling functionalities accompanied by negligible losses at the
corresponding working frequencies. In this work, we propose a tunable all-dielectric
metasurface as an optical filter with high resolution covering different optical communication
bands, where tunability is realized by a combination of changing the incident angle and
modulating the refractive index of an optical phase changing material (OPCM). When the
incident angle varies, our optical filter based on a two-dimensional bound state in continuums
(BIC) metasurface can achieve sequential, extremely sharp resonances. In addition, the
resonance peaks could be further shifted to a different frequency band by the refractive index
change of OPCM via pulsed laser heating. The proposed scheme can offer optical filters with
high spectral resolution and large tunable working wavelength range, which greatly benefits
from the topological property of BIC and large modulation depth of OPCM.

Keywords: tunable, metasurface, optical phase changing material, bound state in continuums,
edge imaging

(Some figures may appear in colour only in the online journal)

1. Introduction

The metasurface, planar arrangements of designed sub-
wavelength nanostructures, has recently emerged as a con-
venient, flexible, and efficient platform for electromagnetic
wave manipulation [1, 2]. Due to the negligible losses at the
designed wavelength, dielectric metasurfaces have recently
attracted a lot of attention [3, 4]. The developed dielectric
metasurfaces have been proposed for various applications
including wavefront shaping [5, 6], spin manipulation [7–9],
and edge imaging [10–15], just to name a few. As optical
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metasurfaces have become relevant for practical applications,
the capability of actively modulating their optical functions is
increasingly important [16–19]. For the realization of most
reconfiguration metasurfaces, the essence is to dynamically
shift the spectral position of the element resonances as a func-
tion of an external stimulation.

Recently, a unique group of materials, optical phase chan-
ging material (OPCM) with at least two different reversely
modulated phase states, i.e. amorphous, and crystalline, have
drawn a lot of attention [20–23]. With external excitation,
OPCM demonstrates significant change of optical properties
under different material phases, which provides an ideal plat-
form for dynamical manipulation of active optical devices.
Among them, Sb2S3 outperforms most other competitors
benefiting from its ultra-low optical loss (k < 10−5) at
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telecommunication wavelengths, which makes it a compelling
candidate in the optical industry [24].

In another context, the bound state in continuums (BIC) is
a general wave phenomenon whose resonances can be per-
fectly confined in the system, with even the outgoing wave
allowed in the surrounding environment [25, 26]. BIC was
first proposed in quantum systems where the electron wave
can be trapped in the designed quantum potential at an energy
that would normally couple to the outgoing waves [27]. The
underlying physical origin of this special localization beha-
vior can be related to the fully decoupling between symmetry
mismatched mode or the interference of radiation modes at
the same location [28, 29]. The experimental realization of
optical BIC devices had been done in both dielectric [30] and
plasmonic [31] systems. Furthermore, BIC has been suggested
for a wide range of applications in lasing [32, 33], sensing [34,
35] and filters [36, 37] due to its unique spatial confinement
conditions.

In this letter, we propose a tunable optical filter based
on BIC reconfigurable metasurface using Sb2S3 as the act-
ive medium at telecommunication wavelengths. The spec-
tral position of resonance alters by controlling the incident
angle of near infrared light and working wavelengths cov-
erage can be further shifted through pulsed laser modula-
tion of the refractive index change of the OPCM. Our pro-
posed idea realizes strong near field enhancement that can
be applied in biosensing with a desired value of quality (Q)
factor. Benefiting from the tunable coupling strength of the
quasi-BIC structure, ultrahigh-resolution spectroscopy can be
achieved in the S-band, C-band and L-band with a reduced
footprint.

2. Method

The wavelength and angle dependent properties (figures 2(c),
(d), (g)–(i) and 3) are simulated using Lumerical Finite-
Difference Time-Domain (FDTD) software. The broadband
fixed angle source technique light source is employed to ensure
the accurate reflectance performance of the designed quasi-
BIC device under different incident angle. The light source
and reflection monitor are placed far enough away from the
structure to avoid any possible interference. In addition to
FDTD simulations, the ideal and quasi-BIC field distribution
(figures 2(e) and (f)) are simulated using the eigenfrequency
solver in COMSOL Multiphysics. In both cases, the periodic
boundary condition is used.

3. Results

3.1. Quasi-BIC metasurface optical filter

We exploit the near-infrared nanophotonic optical filter that
reflects the high-resolution spectral peak at each different
incident angle with a femtosecond (fs) laser pulse to tune the
OPCM properties, thus shifting the resonance frequency.
The working principle is schematically shown in figure 1(a).

The metasurface structure contains a zigzag array of Sb2S3
bars arranged on a CaF2 substrate and capped by the CaF2 to
keep the geometrical structure stable under thermal cycling.
When a pulse laser works as an external stimulus, the angle
dependent spectral peak is shifted as shown in figure 1(b),
stemming from the refractive index modulation of OPCM
(figure 1(c)). Theworkingwavelength range thus can be exten-
ded to cover major telecommunication bands. The line shape
of the resonances is based on the collective behavior of Fano
resonances in all-dielectric metasurface driven by the phys-
ics of quasi-BIC [38]. The refractive index of Sb2S3 used in
this work is adopted from the literature [24], as shown in
figure 1(d).

The unit cell of our designed metasurface consists of two
opposite oriented rectangular-shaped Sb2S3 bars as the active
mediumwhich is shown in figure 2(a). The capping layer CaF2
is added on top of the Sb2S3 bars for protection during the laser
pulse modulation, as described in figure 2(b). First, we analyse
the physical origin of BIC in the designed metasurface with
in-plane asymmetry. The ideal optical BIC structure devices
(consider the material is lossless and the whole structure has
infinite periods) support a symmetry protected state at orient-
ation angle α = 0◦, comprise infinite value of the Q factor
with vanishing optical resonance width. While in practice,
most experimentally realized BIC devices can be considered
as quasi-BIC due to non-ideal lossy dielectric medium, fabric-
ation inaccuracy to partially break the spatial symmetry and
finite sized structure that create additional radiation channel
to external environments. The symmetry protected BICs are
unstable under perturbations that break the in-plane inversion
symmetry (x,y)→ (−x,−y) and will transform into quasi-
BIC state with finite Q factor.

As demonstrated in figure 2(c), detailed reflection spectrum
under different orientation angle α are calculated. It can be
observed that ideal BIC at 0◦ with infinite high Q degrades
into quasi-BIC state with lower Q factor. The reflection line
shape becomes sharper as α is smaller and disappeared at 0◦,
which agrees well with our analysis. Next, we examine the Q
factor dependent on orientation angle provided in figure 2(d).
Especially, the quadratic dependence relationship can numer-
ically represent the behavior of quasi-BIC radiative quality
factor as a function of Qrad (α) = Q0(sinα)−2, where Q0 is a
constant determined by the metasurface design [39]. Further-
more, we study the near field enhancement of the resonance
mode arising from the physics of BIC states, and we choose
the orientation angle α = 12◦ by considering the balance
between the resonance strength and fabrication effort and 0◦

for ideal BIC as two examples, shown in figures 2(e) and (f).
When the orientation angle α = 12◦, the sharp resonance
metasurface exhibits a near field electric field enhancement
|E/E0| over 80 times at resonance, and the field distribution is
strongly localized near the edge of the bars. The calculated
electrical field vector of the two nanobars indicated by the
white arrows point to the opposite directions in figure 2(e).
Figure 2(f) shows that undermirror reflection operation around
y axis, the ideal BIC eigenmode and the electric field vector
is changed by a factor of −1. Which indicates that in-plane
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Figure 1. Concept of the OPCM based BIC metasurface for tunable filters. (a) Schematics of the proposed tunable metasurface. The unit
cell of the designed metasurface (dashed rectangular) contains two rectangular Sb2S3 bars on top of CaF2 substrate, where two bars point to
each other at some angle. (b) Femtosecond pulse laser is used to modulate the phase of Sb2S3, and the central frequency of resonance is
tuned over telecommunication range. (c) Schematic illustration of phase transition of Sb2S3 between amorphous and crystalline states.
(d) The wavelength dependent optical constants of Sb2S3 at different material phases.

inversion symmetry is preserved compared with figure 2(e).
It should be noted that this true BICmode in figure 2(f) cannot
be excited by using far-field illumination at normal incidence,
unless using the near-field excitation approaches or varying the
incident angle [40, 41].

Regarding the desired working band at telecommunica-
tion frequency range, the unit cell of the metasurface has
been optimized with a periodicity of Px = 970 nm and
Py = 555 nm. The length and width of the bar is Lx = 210 nm
and Ly = 390 nm by considering the balance between fab-
rication difficulties and near-field enhancement strength. The
thickness tcap = 500 nm is chosen to eliminate the background
reflection as much as possible. As the height of the Sb2S3 bar
increases, the full width half maximum of resonance increases
and the background off-resonance reflection decreases. The
simulated optical reflection spectra of one unit cell with vari-
ous height of Sb2S3 bars is shown in figure 2(g), and the thick-
ness tbar = 200 nm balances the Q factor and background
reflection, which satisfies our requirement best. The electro-
magnetic simulation software COMSOL is employed for the
calculation of optical properties of the metasurface structures.

We further calculated the angular dispersion relationship of
the metasurface reflection spectra in the case of orientation

angle α = 12◦, as shown in figure 2(h). Note that we only
consider the TE mode due to the choice of symmetry breaking
method in this work. To keep the background reflection clean
and high Q factor not to be affected, incident angle θ between
0◦ and 30◦ is considered in the simulation and resonance pos-
ition can be tuned spectrally from 1540 nm to 1610 nm, as
descripted in figures 2(h) and (i). Here, the dispersion relation-
ship in this quasi-BIC device is mainly related to the coupling
in the short axis between unit cell which can be verified from
its detailed mode profile. Therefore, increasing the incident
angle results in a blue shift. The Q factor around 1100 could
be retrieved from the ultra-sharp Fano resonance and verified
by the eigenvalue of the mode simulation. In addition, a clean
unity resonance feature with ultra-low background (∼2%) can
be found in each reflection spectrum when the incident polar-
ization is parallel to the long axis of the unit cell.

3.2. Switchable bandwidth under OPCM phase modulation

The working wavelengths coverage of the metasurface based
optical filter can be further extended by utilizing the refractive
index modulation ability of Sb2S3. Here, we fix the orienta-
tion angle α = 12◦ and keep all other parameters unchanged.
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Figure 2. Working principle of quasi-BIC optical filter and performance under different conditions. (a) Schematic figure of one unit cell
and incidence configuration. Only transverse electric (TE) mode is considered in this study. (b) Cross sectional view of the unit cell. The
capping layer CaF2 is used to keep the structure stable under pulsed laser modulation. (c) Evolution of the transmission spectra vs
orientation angle α. (d) Dependence relationship of the Q factor on the orientation angle α. The difference between fitting curve and
simulation results stems from the numerical simulation capabilities. (e) Simulated near-field electric field enhancement |E/E0| and the
corresponding electrical field vector for quasi-BIC state at α = 12◦. (f) The same case with (e) but at α = 0◦, which represents the ideal
BIC state. (g) Reflection spectra of the optical filter with different thicknesses of Sb2S3 bars. The red, black and blue curves indicate the
thickness of the bar are 150 nm, 200 nm, 250 nm. Magnified reflectance between 1495 nm and 1515 nm shows in inset figure. (h) Full
resonance dispersion curves under different incident angle θ with α = 12◦. The resonance shifts toward higher frequency while Q factor
remains high and background reflection remains ultralow. (i) Simulated reflection spectra of the incident angle θ at 0◦, 5◦, 10◦, 15◦, 20◦ and
25◦ in transverse electric (TE) mode with orientation angle at α = 12◦.

In this condition, the spectral position of resonance peak in the
optical filter is located at 1535 nm at normal incidence when
the OPCM is in the amorphous state. At this wavelength, we
analyze the normalized electric field (y component) and mag-
netic field distributions shown in figures 3(a) and (c), respect-
ively. When the OPCM is tuned to crystalline, the same simu-
lation is carried in figures 3(b) and (d). In addition, at incident
angle θ = 25◦, the resonance peak shifts to 1468 nm when
the OPCM is in the amorphous state. The same electric and
magnetic field distribution are shown in figures 3(e)–(h).

The evolution of reflectance spectrums under different
incident angles and the material phases of OPCM are shown
in figure 3(i). The solid lines demonstrate the reflection spec-
tra of the structure with Sb2S3 bars in amorphous condition,
of which metasurface bandwidth covers the whole S-band and
part of the C-band.Moreover, the dashed lines demonstrate the

reflection spectra of the structure with Sb2S3 bars in crystalline
condition, and coverage of the C-band and L-band is achieved.
From the yellow curve to blue, it corresponds to the incident
angles around 0◦, 10.5◦, 15.7◦, 19.4◦, 22.6◦, 25.3◦, respect-
ively. Therefore, by combining the tunability of Sb2S3 mater-
ial phase and modulation of the incident angle, the metasur-
face optical filter working bandwidth can fully cover the S, C
and L-bands which is essential for optical telecommunication
industry. Fabrication of the whole device could be done using
standard cleanroom techniques including sputtering, photo-
lithography and etching. To experimentally achieve the phase
transitions between the two states, a feasible method would
be to use femtosecond laser pulses with different pulse num-
ber and pulse energy [42]. Optical measurement with accur-
ate incident angle variation could be done using a standard
rotation stage.
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Figure 3. Tunable metasurface performance with incident angle changing and refractive index modulation. The periodicity of unit cell
Px = 970 nm and Py = 555 nm. The size of the Sb2S3 bars size is fixed at Lx = 210 nm, Ly = 390 nm and tbar = 200 nm. Orientation angle
α = 12◦. (a) and (b) Numerically simulated quasi-BIC for electric field (y component) when the incident angle θ = 0◦ at 1535 nm in the
case of OPCM at the amorphous state. (c) and (d) Normalized magnetic field when OPCM at the crystalline state. (e) and (f) Numerically
simulated quasi-BIC for electric field (y component) when the incident angle θ = 25◦ at 1468 nm in the case of OPCM at the amorphous
state. (g) and (h) Normalized magnetic field when OPCM at the crystalline state. (i) Evolution of reflection spectra for different values of
different incident angles of both amorphous and crystalline Sb2S3. S-band, C-band and L-band can be fully covered with smaller footprint
design.

4. Discussion

It should be noted that in principle, the proposed optical fil-
ter with the whole communication band coverage could be
also obtained by designing multiple metasurface arrays with
different scale factors of the structure [34]. Thanks to the
involvement of the OPCM with greater tunability, only one
metasurface can handle it. Therefore, the complicated design
requirement is reduced. We would like to emphasize that
the proposed working principle could be also extended to
other applications, which is highly desired of the multiple
response of high Q factors, such as spectroscopy. Compared
with electrical-optical system [43] and liquid crystal based
optical filter [44], which can only achieve ∼60% and ∼90%
modulation depth with Q factor being 5–10, our design real-
ized a modulation depth around 97% and Q factor over 1000
and could be easily enhanced by decreasing the orientation
angle between Sb2S3 nanobars. Compared with recent OPCM
based filtering system [45], instead of only one-shot modula-
tion, continuous tunability is realized varying incident angle
and material phase modulation of OPCM. Moreover, the cur-
rent reflection mode for high resolution optical filter could be
achieved by using transmission mode, which will make the
whole system more compact and easier to use for measure-
ment. Meanwhile, it is worth mentioning that there are some
limitations or shortages in our proposed design. Regarding

the fabrication and structure strength, as the sharp corners in
the rectangular bars could be very challenging for lithography
and may not be strong enough to maintain the ultrahigh field
enhancement as quality of shape may degrade during material
phase modulation [46].

In conclusion, we have proposed a tunable metasurface that
can serve as reflective optical filter based on the optical phase
transition material Sb2S3 at telecommunication wavelengths.
In our design, the symmetry protected quasi-BIC ensures the
ultrasharp Mie resonances and unity on-resonance reflection.
Furthermore, we have demonstrated the spectral position of
resonance can be tuned by both the incident angle of light
and phase states of Sb2S3. The whole working bandwidth
can cover the major optical communication bands by combin-
ing the tunability of incident angle and phase modulation of
Sb2S3 with a low background reflection as smaller as 2%. Our
scheme is not just limited to optical filters, but could be further
extended to spectroscope research in biology and the working
wavelengths can be shifted to longer wavelengths in the near-
infrared or mid-infrared using other OPCM [18, 47].
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